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Abstract

This thesis introduces TLM as a new method for modelling medical ultrasound wave propaga-

tion.

Basic TLM theory is presented and how TLM is related to Huygens principle is discussed. Two

dimensional TLM modelling is explained in detail and one dimensional and three dimensional

TLM modelling are explained.

Implementing TLM in single CPU computers and parallel computers is discussed and several

algorithms are presented together with their advantages and disadvantages. Inverse TLM and

modelling non linear wave propagation and different types of mesh are discussed.

A new idea for modelling TLM as a digital filter is presented and removing the boundary effect

based on digital filter modelling of TLM is discussed.

Some modelling experiments such as :

� Focusing mirror.� Circular mirror.� Array transducers.� Doppler effect.

are presented and how to use TLM to model these experiments is explained.

A new low sampling rate theory for TLM modelling is proposed and verified. This new theory

makes the modelling of a much larger spaces practical on a given hardware platform.
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Chapter 1

Introduction

Ultrasound is widely used in many areas in medicine. It provides a safe and efficient means for

diagnostics and therapy. Unfortunately our knowledge of how ultrasound waves propagate and

interact in a complex medium such as body is limited.

1.1 Why it is necessary to model ultrasound wave propagation

We have enough knowledge of how ultrasound waves propagate in a simple medium, but when

the medium becomes complex with several objects of different sizes and shapes, solving the

wave propagation formula becomes virtually impossible [10]. Inside the body the case is much

more complex since not only each organ has its own shape and size, the ultrasound propagation

speed is different for each tissue. Modelling becomes much more complex when one knows

that tissues are not a homogenous medium for ultrasound wave propagation. Fig[1.1] shows an

artery. As can be seen from this fig, even a specific place in the body has different shapes and

properties when it is normal and when it is abnormal. Physicians are very interested to detect

abnormalities in arteries, so that they can prescribe the right medicine to the patient. One good

Figure 1.1: An artery when it is normal and when it is abnormal [1].
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Figure 1.2: An ultrasound image from an artery [2].

solution is to use ultrasound imaging1. An ultrasound image of an artery is shown in fig[1.2].

1.1.1 Ultrasound tissue characterization

One of the active research topics in medical ultrasound systems is tissue characterization with

ultrasound [11], which is determining the type of tissue by using an ultrasound image. The

simplest way is to use the gray level of the ultrasound image as an indication of the tissue type.

For example, in fig[1.3], a simple method to determine the type of plague in an artery ( see

fig[1.2]) is shown. This method is very simple but inaccurate.

There are several other techniques for tissue characterization. The most common is spectrum

analysis [12], [13] which is based on the fact that the spectrum of the back scattered ultrasound

signal depends on the type of tissue being imaged. There is not a clear understanding why

and how each tissue changes the spectrum of the received signal. One other problem in tissue

characterization with spectrum analysis is that the received signal is affected by the intervening

tissue in the propagation path. This effect may change the result dramatically. Unfortunately

1This kind of ultrasound imaging called Intra Vascular Ultra Sound (IVUS).
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Figure 1.3: A simple method for tissue characterization [1].

knowledge of the effect of other tissue in the ultrasound wave propagation path is poor.

Since it is not possible to model the ultrasound wave propagation mathematically2 , it is not

possible to predict the effect of each tissue on the back of the tissue being imaged for the diag-

nostic purpose [14]. One way to solve this problem is to model the ultrasound wave propagation

numerically.

1.1.2 Ultrasound transducer design

The accuracy and performance of an ultrasound system depends on its ultrasound transducer3 .

The shape of an ultrasound transducer determines the shape of its transmitted propagation

beam. To understand exactly how an ultrasound image is created one should know how the

ultrasound wave is generated and the ultrasound wave beam shape.

There are some expensive pieces of equipment for finding the beam shape of an ultrasound

transducer. To use this equipment, one should make the transducer and then test its beam

shape.

The situation is more complex for array transducers since for these types of transducers, the

beam shape not only depends on each array element but also on when each element is fired

compared its neighbours.

The best way to make an ultrasound transducer is to model it to predict the beam shape and

2The body structures are so complex that it is not possible to model ultrasound wave propagation mathematically
in the body.

3The electronic section of an ultrasound system can be modelled in several ways and there are several good
commercial software packages available on the market to do this.
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then to adjust the transducer until the beam shape is close equal to the desired one. Only then

the transducer should be made.

1.1.3 Doppler ultrasound

By using the Doppler effect, some ultrasound systems detect movement4 and determine the

speed of a movement in the body5 . In all of these examples, the Doppler shift is very complex

since the movement may be very complex. To find the exact speed of blood flow, for example,

one should know how this complex movement will generate Doppler shifts.

Since the Doppler shift depends on movement and the movement is very complex, modelling

the Doppler effect in these cases is very complex. This complexity makes it very difficult or

some times impossible to solve the problem mathematically.

1.2 TLM modelling

Transmission line matrix (TLM) modelling is a numerical modelling technique for wave prop-

agation [15]. It is used extensively in modelling electromagnetic wave propagation [16]. As it

is a model for wave propagation, it can be used to solve several of the problems6 in ultrasound

wave propagation in medical systems7.

The work that presented in this thesis is to demonstrate how to use the Transmission Line

Matrix (TLM ) for modelling ultrasound wave propagation. This modelling can give us a more

detailed understanding of how ultrasound waves are reflected and scattered by different tissues

in the body.

Although TLM modelling was originally developed for modelling electromagnetic wave prop-

agation, there has been some limited work on using TLM for modelling acoustic waves [17],

[18], [19] . Since electromagnetic waves and ultrasound waves are very similar in propaga-

tion behaviour, a table to show how these two waves are related to each other is presented (see

chapter 4).

4For example detect the heart movement of a fetus in a pregnant women.
5For example to determine the speed of blood flow in a vessel
6In this thesis, TLM will be used to model array transducers and the Doppler effect.
7It can be used for other types of ultrasound modelling to, but only medical ultrasound is presented here.
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1.3 The thesis organization

This thesis consists of 7 chapters. The first 3 chapters contains background information. In

chapter 1 (this chapter), the reason for doing this work is explained.

Chapter 2 is about medical ultrasound systems. It is useful for any engineer who hasn’t a back-

ground in medical ultrasound systems. It contains some information about how an ultrasound

imaging system works and what type of ultrasound imaging systems are there. Some types of

ultrasound transducers are also explained in this chapter.

The basic theory of wave propagation and in particular sound/electromagntic waves propaga-

tion is presented in Chapter 3. In this chapter, the basic idea of a transmission line is also

explained.

In chapter 4 TLM will be introduced. In this chapter, the mathematical theory behind TLM

is given and by focusing on 2 dimensional TLM modelling the properties of this modelling

technique will be explained. Some algorithms for TLM modelling will be presented in this

chapter and advantages and disadvantages of each algorithm are explained. One dimensional

and 3 dimensional TLM is also introduced and inverse TLM is discussed. Since TLM was

originally used for electromagnetic wave propagation modelling, use for ultrasound systems is

explained.

In chapter 5, Some modelling results will be presented. This modelling is achieved with mod-

ular software which can be used as the basis for modelling complex problems.

Since the the TLM modelling is a computerized modelling, the amount of memory and com-

putational power that needs depends on the wavelength of the wave in the medium. Since

the ultrasound wave propagation speed in the body is not very fast8 the wavelength of the ul-

trasound waves in the body is very short. This short wavelength makes the TLM modelling

very complex and doing realistic modelling is nearly impossible. To solve this problem a new

sampling theory is presented in chapter 6. The result of this sampling theory shows that it is

possible to model realistic ultrasound wave propagation with computers available now.

8Comparing to the speed of electromagnetic wave in the air.
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Chapter 2
Medical ultrasound

2.1 Introduction

Ultrasound waves are widely used in medicine [20],[21]. As diagnostic ultrasound represents

no general hazard (but some specific area of hazard) to the health of a patient, its usage is

growing rapidly[22] [23] [24]. Ultrasound is well known for imaging but it has several other

uses in medicine such as:

� Movement detection� Medical Therapy� Lithotripsy

Ultrasound imaging, the most important and widely known application of ultrasound, will be

explained in this chapter. It should be noted that the results of this research can be used for

modelling ultrasound wave propagation in other applications too.

The principal attractions of medical ultrasound imaging are:

Hazard risk: It is considered by medical experts to represent no hazard to the health of a

patient[24].

Price: It is cheaper than other imaging systems [25].

Suitability for soft tissue: It is good for imaging soft tissue structures in detail [2].

Portability: Portable ultrasound systems are available.

Measurement of movement: It is possible to measure movement within the body , for exam-

ple the movement of blood in the heart or in the arteries.
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Ultrasound imaging is considered to be safe[26]. Although some reports have been presented to

indicate that ultrasound is hazardous, these reports have proven to be unfounded [24]. Medical

experts currently believe that exposing a patient to the clinical level of ultrasound has no danger

to the patient[26]. This provides the opportunity for repeated clinical examination of a patient

without worry about the side effects.

2.2 General ultrasound imaging

Ultrasound can be used to construct images of the human body due to the interaction between

the body tissue and the ultrasound vibration [27] [28] [29]. It is used for imaging many parts of

the body including:

� Heart� Fetus� Vascular system� other small parts such as kidneys and liver

In fig[2.1] a typical ultrasound system is shown. As seen from this figure, a typical ultrasound

system consists of 3 parts:

Transducer: Transducer is used for producing ultrasound waves and detecting back scattered

ultrasound waves. Transducers are piezoelectric crystals which are designed to vibrate

at a specific frequency. This frequency is called the natural frequency of the transducer.

For medical systems, this frequency is typically 1 MHz to 30 MHz. The ultrasound will

be created by applying a short duration voltage pulse to the transducer.The duration of

this pulse is selected in such a way that the produced signal is only for a few cycles

duration. After the ultrasound wave is created, the transducer changes its mode to act as

a receiver. In this mode the transducer detects the ultrasound waves and converts them

to corresponding voltages. These voltages will be used by electronic circuits in the data

acquisition and processing section to generate an image. Some typical transducers that

are normally use in medical imaging are shown is fig[2.2].
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Transducer

Signal

Processing

Image display

Figure 2.1: The block diagram of a typical medical ultrasound imaging system.

Figure 2.2: Some typical transducers that used normally in medical imaging [3].
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Figure 2.3: The block diagram of the signal processing section of a typical medical ultrasound
imaging system (TGC =Time Gain Control).

Data acquisition and processing: In this section, the received signal from the transducer is

first amplified based on the time that it is received and filtered to remove some additive

noise. Then an envelope detector is used to detect the envelope of the amplified signal.

The output of the envelope detector is digitised and the digitised data is processed to

create the required image. A typical ultrasound system block diagram is shown in fig[2.3]

Display: Typically a CRT monitor is used to display the generated images. Since the ultra-

sound images are high resolution, these CRT monitors are high resolution monitors.

Some ultrasound systems can print the images on a thermal printer and some others can

print them on normal paper. Since the physicians use the monitor to see the images and

in most cases they do their diagnostics based on their observation, these displays should

be very accurate and with good quality. In fig[2.4] a normal ultrasound system is shown.

2.3 Different types of medical ultrasound systems

There are several types of medical ultrasound system. Each of these types is designed to suite

a specific usage in medical imaging. For example there are some ultrasound imaging systems
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Figure 2.4: A typical medical ultrasound system. The display section is a CRT monitor [4].
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which are designed to monitor heart activity while some others are designed to monitor foetal

and pregnant woman. Different ultrasound systems use different transducers (frequency, shape,

number of elements if it is an array, scanning type, etc.) , displaying mode ( A-Mode, B-Mode,

M-Mode and 3D) and the way that the image is created ( Reflection or transmission imaging).

2.3.1 Reflective and transmission based ultrasound

An ultrasound system creates an image by calculating how an ultrasound wave is changed when

it propagates through the body. There are two ways that an ultrasound system can calculate the

way that an ultrasound wave is propagating in a medium:

Transmission: The image is produced based on the amount of wave that is transmitted thought

the body.

Reflection: The reflected wave from different parts of the body is used to create an image.

2.3.1.1 Transmission ultrasound imaging

Each part of the body absorbs a specific amount of ultrasound wave energy. The transmission

ultrasound imaging system uses this fact and measure the amount of wave incident to the re-

ceiver and creates an image based on it. In fig[2.5], a simplified transmission ultrasound system

is shown [30] [31].

In this type of ultrasound systems, there are two transducers, one for generating the ultrasound

wave and the other for detecting the ultrasound wave. The patient body will be placed between

the transmitter and the receiver transducers. The received signal strength at the receivers is

measured and based on these measurements the image is created. The time taken for an ultra-

sound pulse to pass through the system ( from the transmitter to the receiver) is a transmission

based system in given by equation[2.1]. , /	 (2.1)

Where d is the distance between the transmitter and the receiver and C is the speed of sound

in the medium. It is worth noting that the transmitter can generate several pulses before the
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Transmitter

Receiver

Object

Figure 2.5: A simplified transmission ultrasound system.

receiver detect the first one1. In this case the frame rates of the ultrasound images are very

high.

2.3.1.2 Reflective ultrasound imaging

The speed of an ultrasound wave in each part of the body is different from any other part of the

body. When an ultrasound wave is reaches the interface of two parts of the body, a small part

of the incident energy will be reflected back. The amount of reflected ultrasound depends on

the relative impendence of the two part of the body. This amount can be calculated by using

equation 2.2.0 1325476�894;:=<>4;?�0 , @@@@ A 
 ( A �A �CB A 
 @@@@ � 0 1EDGF :HDI?J4�FK<L0
(2.2)

where
A 
 is the impedance of the body part that sound is trying to enter and

A � is the impedance

of the material that the sound wave is trying to leave. In a reflective ultrasound system this

reflected (or scattered back) signal is measured and an image is created based on it. Erroneous

1The time difference between each two pulse should be so that the first pulse would be received by all the
receivers before the next pulse received by any of them.
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Transmitter
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Object

Receiver

(b) Receiving phase

Figure 2.6: The basic principle of a reflective ultrasound system.

multiple reflection can occur and be detected. Distinguishing multiple reflections from normal

single reflection can be very difficult and some times impossible. In fig[2.6] the basic principle

of a reflective ultrasound system is shown.

2.3.2 Imaging format

There are several way to display ultrasound data and hence several imaging formats for ultra-

sound systems. These imaging formats are:

1. A-Mode imaging.

2. B-Mode imaging.

3. M-Mode imaging.

4. 3D and 4D imaging.

These methods for displaying ultrasound images will be explained in the following sections.

2.3.2.1 A-Mode imaging

A-Mode or amplitude mode is the simplest form of ultrasound imaging. It is a one dimen-

sional imaging technique and has limited applicability. As it is the simplest way to display the
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Figure 2.7: A sample A-Mode display.

ultrasound data, it will help a user to understand all other types of display modalities.

In fig[2.7] a sample display from an A-Mode ultrasound system is shown. As it can be seen

from this figure, the received signal is displayed on the screen in a similar manner to displaying

a voltage signal on an oscilloscope. The X axis of the display is time and the Y axis of the

display is the amplitude of the received signal after demodulation. One important thing that

one should note here is that as the wave is travelling in the body, it will be attenuated and hence

this attenuation should be compensated2 . Time gain compensation (TGC) is a popular way

to do this. In TGC, the received signal is amplified based on the time difference between the

time that the original pulse is generated and the time that the reflected signal is detected by the

transducer. In some new systems, TGC is automated.

2.3.2.2 B-Mode imaging

B-Mode or brightness mode is a successor to the A-Mode imaging. It can be used for dis-

playing 2 dimensional and 1 dimensional images, however, it is mostly used for displaying 2

dimensional images. A 1 dimensional B-Mode image would appear on the screen as a single

straight line of dots. The brightness of each dot depend on the intensity of the received signal

over time. If there will be more than one transducer3 (see fig[2.8]) then there will be several

2It should be noted that it is only applied to reflective imaging.
3This is the linear array transducer.
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Figure 2.8: A linear array transducer can be used to create a B-Mode image [5].

lines and it will create a 2 dimensional image.

Limitation of computer monitors (and human eye) Modern computer monitors quantize the

colours that they display. The colours are constructed from red,green and blue compo-

nents and each of the read, green and blue are quantised to 256 or shades, making ��%�&NM
(or 16.7 million) colours in all. Gray scales are shown as combinations of red, green and

blue in equal measures, so there are 256 available shades or gray. The limited number of

available gray scale shades makes the B-mode inferior to A-mode in the case of 1 dimen-

sional images. It is unlikely that computer monitors will be able to display more colours

in future, as it is generally accepted that the human eye can’t differentiate any more than

256 shades of each red, green and blue.

In order to show greater detail in gray scale images, B-mode images are usually log trans-

formed and scaled so that full scale is between 30 and 60dB. This effectively amplifies

small ultrasound signals so that become more clearly visible. For example: At 50dB full

scale, a signal 25dB smaller than the strongest signal will appear as
+5����5� grey after log

transforming. If the log transform was omitted, then a signal 25dB below the strongest
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signal would appear as
+���5� grey (almost black and barely visible above the black back-

ground).

2D image construction in real time The advantage of B-mode imaging is that successive 1-

dimensional images of neighbouring regions can be constructed into a composite image

that is 2-dimensional (as in fig[2.9]). This scanning and image construction could be

done in real time and as the result, the image would be appear as a truly 2-dimensional

to the user.

Many commercial ultrasound systems have a frame rate of 25 (or 30) frames per second.

This means that every different 1-dimensional scan has been performed 25 times every

second and a new 2-dimensional image has been constructed and displayed 25 times

every second.

2D image construction: Transducer steering Between successive 1-dimensional scan, the trans-

ducer must somehow steer (or shift) so that a different part of the target image area is

scanned. There are several common means of doing this, all of which are automated.

The steering process and the type of transducer that it uses for steering are explained in

section 2.3.3

2D image construction: Raw RF signal processing The processing that is performed between

the scan and the image display is very important to any ultrasound imaging system. The

signals are typically filtered, demodulated (or envelope detected), log transformed, and

geometrically transformed.

In their raw form, the ultrasound signals are not suitable for display in either A-mode or

B-mode. In A-mode the signal are processed only one step: demodulation.

Demodulation attempts to provide an envelope detection function. This is commonly

performed with Hilbert transform. The Hilbert transform is defined as a filter whose

transfer function is given in the following equation:

OQP DI89RH4�2S<5TVUXW , YZZ[ ZZ\ (^]_,a`cb�dHeSfg Uih �B ]_,a`kj dHeSfg Uil �� U ,�� (2.3)

The output of this filter is then called Hilbert[yn)], and is the original signal with the phase

of every Fourier component changed by m � � . Hilbert[y(n)] is defined in the following
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Figure 2.9: A typical B-Mode display.

equation:Oon �Hpq`#r ."s t T � W�u ,-v3w �"xzy P DI8{RH4;2S<LTVUXW}| v s t T � W�uH~ (2.4)

The final demodulated signal is obtained by applying the following equation to the re-

ceived signal y(n):t T � W7?J4��X�S?5��8{�L<>4;? ,�� T t T � W5W 
 B T Oon �Hp"`�r ."s t T � W�u�W 
 (2.5)

Since large number of transducers operate by rotating the ultrasound beam (either using

rotation or a phased array), consequently it is often necessary to perform a geometric

conversion (usually involving a conversion from polar to rectangular co-ordinates). The

scan data often uses polar co-ordinates and all display monitors use a rectangular display

grid. The co-ordinate conversion is typically performed using bilinear interpolation.

A typical B-Mode image is shown in fig[2.9]4.

4This is an ultrasound image from my son: Ariasun, when he was 16 weeks
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2.3.2.3 M-Mode Imaging

M-Mode (or motion mode) image results from a 1 dimensional scan, that is scrolled across the

screen over time (as a series of 1 dimensional B-Mode lines). The scrolling can be horizontal

or vertical. The transducer will generally be held stationary or near stationary, for this type of

scan. The frame rate for this type of scan is very high e.g 600 frame per second (fps) [32]

2.3.2.4 Three dimensional and four dimensional imaging

A new development in ultrasound imaging is the advent of three dimensional imaging and the

so called four dimensional imaging. The four dimensional imaging is the real time three di-

mensional imaging with time as the ! <>� dimension [33]. In the three dimensional imaging, the

transducer is physically moved in order to create a 3D image. Since physically moving the

transducer is a slow process, currently there are not any real time three dimension ultrasound

systems. In a typical three dimensional ultrasound system, the transducer is rotated thought� & � � in quantized steps while scanning 2D images at each step. There are two common tech-

nique used for the three dimensional visualisation (which is called rendering):

Surface rendering: The technique is based on defining a series of connected polygons that

combine to form the complete shape of the object being rendered. In some graphic pack-

ages this leads to a rendering that appears chunky as a result of curved objects not being

well suited to model with flat polygons. Some newer packages attempt to simulate curved

objects with curve fitting between the defined points of the polygons. In most cases this

technique is successful and provides realistic looking 3D images. The most important

advantage of this technique is that it is computationally the most efficient known method

for rendering 3D images. One disadvantage of this type of rendering is that if the number

of polygons used to render a surface is too few, then the surface detail will be lost. The

other disadvantage of this method is that it gives information about surface and nothing

about the underlying structural information. Since structural information is important in

medical imaging, this is not a good method for medical image rendering. For this reason

its use will be restricted to some types of imaging systems such as B-Mode images.

Volume rendering: This technique involves specifying the object to be rendered as a three

dimensional set of ”VOXEL” (VOXEL=Volume Element, the 3D equivalent of a 2D

pixel). In the simplest case, each voxel is specified as opaque or transparent (that is ,
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Figure 2.10: Some typical 3D images [6].

as solid mass or empty space). Volume rendering is superior to surface rendering for

applications requiring tissue characterization. One drawback of the volume rendering is

that noise in the signal tends to be enhanced in the final 3D images.

Recently new techniques have emerged , such as ”semi-transparent volume rendering” [34] and

”augmented reality” [35]. Two typical 3D images are shown in fig[2.10].

2.3.3 Ultrasound Transducers

The ultrasound transducers are made from materials that contain piezoelectric crystals. A piezo-

electric crystal will vibrate when excited by an AC electric signal of the right frequency (trans-

mit mode). Conversely it could generate a small electric signal when forced to vibrate (received

mode).

The transducer is used to convert electronic signals to ultrasound waves which are transmitted

to the body and also for converting the received ultrasound waves to electronic signals. A

simple transducer may be used in A-mode (one dimensional scanning) ultrasound systems. In

2D and 3D ultrasound systems one part of the body would be scanned and hence a simple one

element transducer can’t be used unless it is mechanically scanned. There are several type of

transducers that can be used in this type of medical imaging systems [36]:

1. Linear Array transducer
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2. Phased array transducer

3. Mechanical scan transducer

2.3.3.1 Linear array transducers

In this type of array transducers, each element of the transducer will be working independent

of the others (fig[2.11]). For each groups of elements, a 1 dimensional B-Mode image will be

created. By putting all of these one dimensional images next to each other, a 2-dimensional

B-Mode image will be created. In a typical ultrasound system, some of these elements may

be fired at the same time to make a more powerful beam. A typical linear array transducer is

shown in fig[2.12].

2.3.3.2 Phased array transducers

In a phased array transducer, each element will be fired with a time delay compared to other

elements in the array. By changing this delay, the wave front could be steered to different

places in the body. In fig[2.13] the steering process is shown. In fig[2.14], a typical phased

array transducer is shown.

2.3.3.3 Mechanical scan transducer

In a mechanical scan transducer, a single transducer is used for transmitting and receiving.

The transducer mechanically rotates to scan the interested media. The structure of a typical

mechanical transducer which is used in intravascular imaging system is shown in fig[2.15].

2.4 Doppler systems

The basis of Doppler ultrasound systems is the fact that reflected/scattered ultrasonic waves

from a moving interface will undergo a frequency shift [37], [38]. In general the magnitude

and the direction of this shift will provide information regarding the motion of this interface.

To appreciate this very general fact we need to consider the relationship between the frequency,���
, of waves produced by a moving source and the frequency,

�N�
, of the waves received by a

moving receiver. For simplicity we shall assume that the source and receiver are moving along
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Figure 2.11: A linear array transducer used to scan a medium [7].
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Figure 2.12: A typical linear array transducer [3].

the same line. The argument that follows can be generalised to three dimensions if wave speed

is isotropic and the source produces spherical waves.

At t=0, let the source, S, and receiver, R, be separated by a distance d.

At t=0 let S emit a wave that reaches R at a time t later as shown in the following fig.
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Figure 2.13: The steering process in a phased array transducer [7].

24



Medical ultrasound

Figure 2.14: A typical phased array transducer [3].

Figure 2.15: The structure of a mechanical scan transducer [1].
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In this time t the receiver will have moved a distance and the wave, propagating with velocity

C will have travelled a distance. Thus

	 . , / Bi� � .. , /	�( � � (2.6)

Now at time � , the source will have moved a distance � � � . Let the wave emitted at that instant

be received at time
.S�

by R.

In this time R would have travelled a total distance of � � .7� , and thus

	 T . � (�� W , T / ( � � � W B�� � . �. � , / B T 	a( � � W �	�( � � (2.7)

Thus for the receiver the interval between the waves has been

� � , . � ( .� � , / B T 	a( � � W �	�( � � ( /	�( � �� � , /	�( � � B T 	a( � � W �T 	�( � � W ( /	�( � �� � , T 	a( � � WT 	�( � � W ��� � , T 	�( � � WT 	a( � � W (2.8)

whereas for the source the interval between the waves has been � . Now the number of waves
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emitted in � � by the source must be equal to the number of waves received by the receiver in i.e

� � � � , � � ���� , �� � ��� (2.9)

Substituting the value of ��"� ,��� , 	�( � �	a( � � ��� (2.10)

2.5 Conclusion

Some background information about using ultrasound in medical systems were presented.

Since medical ultrasound imaging is widely used by physicians, it was explained in more detail.

Array transducers were introduced and how they can be used to scan a region by firing each

element of the array sequentially was shown.

Use of the Doppler effect was examined. For the simple case where the source and/or the

receiver was moving the Doppler shift was calculated.
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Chapter 3

Wave and sound theory

In this chapter some background information about the theory of ultrasound wave propagation

will be presented. This background information should refresh the mind of readers to have

a better understanding of the mathematics behind the modelling presented in chapter 5. The

mathematics that will be presented here is very short and is only for refreshing the readers

mind. There isn’t any proof for most of the formulae in this chapter and the interested reader

may consult the references for mathematical proof.

3.1 Introduction

Ultrasound is a sound wave whose frequency is higher than the hearing limit of humans which

is about 20kHz. The frequency in medical ultrasound systems varies between 2 MHz to about

30 MHz. The frequency of a normal medical imaging ultrasound system is about 3.5 MHz.

Some medical ultrasound systems with very high resolution output may use ultrasound waves

with higher frequencies.

In the first section of this chapter some background information on sound wave generation and

propagation will be presented. Since the TLM is based on transmission line theory, The basic

transmission line theory will be presented in the next section of this chapter.

3.2 Waves

3.2.1 Basic wave theory and definitions

In this subsection basic wave theory will be explained. This theory can be extended to sound

waves and electromagnetic waves.
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Figure 3.1: Graphical representation of a simple harmonic oscillation. Note that the X axis is
time steps.

3.2.1.1 Simple harmonic oscillation

It can be shown that a simple harmonic oscillation is represented mathematically as [39] :� T . W , 1 �c�J��� TVU . W (3.1)

Where
U

is the angular velocity of the oscillation and
� T . W

is the wave amplitude at time
.
. The

graphical representation of a harmonic oscillation is shown in fig[3.1].

The frequency
�

of the oscillation can be found by using the following equation:� , U� � (3.2)

The frequency of an oscillation is, by definition, the number of oscillation per second [40]. If

the time for one oscillation is T, then the frequency can be found as follow:
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� , �� (3.3)

In a discretised system in which the time is discretised, the frequency can be found as follow:

� , ������ (3.4)

Where ��� is the time between adjacent samples and � is the number of samples in one cycle.

3.2.1.2 The wave equation in one dimension

It can be shown that the wave equation in one dimension (direction of movement is z) is:� T��N� . W , 1 �c�J�>� TVU . (�� ��W
(3.5)

Where
.

is time and
�

is the distance from the origin (assuming that the wave source is located

at
� ,a� ).

� T��N� . W
is the wave amplitude at time

.
at place

�
.
U

and � defined as:

� , � ��U , � ��	�
where

�
is the wavelength1 and C is the wave speed in the medium.

1Wavelength is the distance that wave propagates in one cycle.
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3.2.1.3 Wave equations in 3 dimensions

It could be shown that any wave equation should satisfy the following relations [41][42]:� 
 � T� ¡� t �J�¢� . W� . 
 , ( U 
 � T� �� t �J�N� . W� 
 ��   
 , (3£ 
¤ �� 
 �� t 
 , (3£ 
¥ �� 
 �� � 
 , (3£ 
¦ �
(3.6)

In one dimension, these equations reduce to :� 
 � T��¢� . W� . 
 , ( U 
 � T��N� . W� 
 �� � 
 , (3£ 
¦ �
(3.7)

It could be shown that equation 3.5 can satisfy this equation:

� T��¢� . W , 1 � �J��� TVU . (�� ��W� � T��N� . W� . , ( UQ§"¨ � TVU . (�� ��W� 
 � T��¢� . W� . 
 , ( U 
 �J�>� TVU . (�� ��W� 
 � T��¢� . W� . 
 , ( U 
 � T��N� . W
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Figure 3.2: Longitudinal waves [8].

and:

� T��N� . W , 1 � �J�>� TVU . (�� ��W� � T��N� . W� � , � §"¨ � TVU . (�� ��W� 
 � T��N� . W� � 
 , (E� 
 �J�>� TVU . (�� ��W� 
 � T��N� . W� � 
 , (E� 
 � T��N� . W
3.2.1.4 Longitudinal and transverse waves

If the vibration is parallel to the direction of propagation then the wave is a longitudinal wave

[43] (see fig[3.2]).

If the vibration is perpendicular to the direction of propagation then the wave is a transverse

wave (see fig[3.3]).
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Figure 3.3: Transverse waves [8].

3.2.1.5 Scalar and vector waves

If the wave is propagated in the z direction then for a longitudinal wave, only the value2 of the

wave at each point is important since the direction is defined and is parallel to the direction of

wave propagation which is z direction. This kind of wave3 is called a scalar wave since only a

number is needed to identify the wave at each point in the medium.

The case for a transverse wave is more complex, since the direction of vibration could be any

direction in xy plane. For a transverse wave, not only the value4 of the wave at each point

should be specified, but also its direction5 should be specified [44]. These kind of waves6 are

called vector waves since to identify the wave at each point, not only a value but also a direction

should be specified.

2Amplitude
3Longitudinal waves
4Amplitude
5In the plane perpendicular to the direction of wave propagation
6Transverse waves
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3.2.1.6 Mechanical and non-mechanical waves

Mechanical waves are waves that need a medium for propagation [45], [46]. Non-mechanical

waves do not need a medium to propagate. For example sea waves are mechanical since they

need a medium (sea water) to propagate. Light is a non-mechanical wave since it can propagate

in vacuum.

3.2.2 Sound waves

Sound waves are mechanical waves. They are longitudinal waves and hence are scalar waves

[47].

The general sound wave equation in 3 dimension is [45], [40]7 :� 
 � T� �� t �J�N� . W� . 
 ,�© 
«ª � 
 � T� �� t �J�N� . W�   
 B � 
 � T� ¡� t �J�N� . W� t 
 B � 
 � T� ¡� t �J�N� . W� � 
 ¬ (3.8)

Where © can be found from the following equation:

©E, �� ­�® (3.9)

In this equation ® is the compressibility and ­ is the density.

3.2.3 Electromagnetic waves

Electromagnetic waves are non-mechanical waves. They are transverse waves and hence vector

waves.

The electromagnetic wave equation in 3 dimension can be written as:� 
 � T� �� t �J�N� . W� . 
 ,�© 
 ª � 
 � T� �� t �J�N� . W�   
 B � 
 � T� ¡� t �J�N� . W� t 
 B � 
 � T� ¡� t �J�N� . W� � 
 ¬ (3.10)

Where c is the wave speed in medium and can be calculated by using the following formula:

©E, �� ��¯ (3.11)

7This is the sound wave equation in air when the wave amplitude is small and so the medium is a linear system.
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Where
�

is the permeability and
¯

is the permittivity.

3.2.4 Wave reflection and refraction

If a wave arrives at the interface between two media8, then there would be a reflected (back

scattered) wave and a refracted wave. If the new medium is denser than the original medium,

then the wave reflects with �#° � � phase difference, other wise the reflected back signal is in

phase with the original wave [45]. The wave in the new medium is always in phase with the

original wave. The back scattered wave is called the reflected wave and the propagated wave in

the new medium is called the refracted wave.

3.2.4.1 The law of reflection and refraction

The reflection law is:

The reflected and incidence waves are in a plane and the angle of incident and
reflection are the same:± � , ± M (3.12)

Where
± � is the incident angle and

± M is the reflection angle (see fig[3.4]).

The refraction law is:

The refracted and incidence waves are in a plane and the angles of incidence
and reflection are related to each other by the following equation:� � �J�>� ± � ,²� 
 �J�>� ± 
 (3.13)

Where
± � is the incident angle and

± 
 is the refraction angle (see fig[3.4]). Here � �
is a dimensionless constant called the index of refraction for medium 1 and � 
 is
the index for refraction of medium 2.

The index of refraction of a medium depends on the wave speed in the medium. It is mostly

calculated based on the wave speed in a reference medium. For electromagnetic waves this

8It is assumed that the size of this interface as seen by the wave is much bigger than the wave length of the wave.
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Figure 3.4: Reflection and refraction law.

reference medium is the empty space. For sound this reference medium could be air9. If the

speed of a wave in the medium is ³ and the speed of a wave in the reference medium is © , then

the index of refraction can be calculated as follow:

�o, ©³ (3.14)

By substituting the value of the refractive index from this equation to equation 3.13, one can

write the following equation:

� �¢�J�>� ± � , � 
´�J�>� ± 
©³ � �J�>� ± � , ©³ 
 �J�>� ± 
�³ � �J�>� ± � , �³ 
 �J�>� ± 
³ 
c�J�>� ± � , ³ �¢�J�>� ± 
 (3.15)

9It doesn’t matter which medium is the reference medium as long as the reference medium is the same for
calculating both the µN¶ and µ g .
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3.2.4.2 Total reflection

Equation 3.15 shows the relationship between incident angle and refraction angle. One may try

to find the refraction angle and rewrite this equation as follow:± 
 , �J��� w � T ³ 
³ � �J��� ± � W (3.16)

As seen from this equation,
± 
 hasn’t any value unless · g· ¶ �J�>� ± � is between (¸� and � . If the

value of · g· ¶ �J��� ± � is greater than � or less than (_� , then there isn’t any refracted wave and all

of the wave will be reflected back. The minimum angle that total reflection is occurred can be

found as follow10:

0 ³ 
³ � �L�>� ± � 0º¹ �³ 
³ � 0 �J��� ± � 0º¹ �0 �J��� ± � 0º¹ ³ �³ 
 (3.17)

3.2.5 Wave Scattering

In the previous section, it was assumed that the interface size is much bigger than the wave-

length and the wave speed in the two media changes abruptly. Most interfaces in the human

body are not compatible with the reflection interface criteria. In some cases the size of the ob-

ject is comparable (or smaller)with the wavelength11 and in other cases the speed is changing

gradually from one medium to the next12. In most cases the actual interface is a combination

of these two cases. The way that wave interact in these cases is called scattering.

Compared to reflection, the case for scattering is much more complex. The scattering pattern

not only depends on the object size compared to the wavelength but also to the shape and wave

speed in the object[48]. Since this theory is very complex, several authors have tried to find

the scattering patterns for some known shapes such as cylindrical scatters [49] and spherical

scatters [50]. Even thought there are solutions for a limited range of other shapes, spheres and

10Since » is the wave speed, it is always a positive number and hence ¼S½¼J¾ and ¼5¾¼7½ are positive numbers.
11For example the interaction of blood cells and ultrasound falls to this category since the size of the blood cells

are very small comparing to the wavelength.
12For example the interface of skin and the underlying tissue falls to this category
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cylinders can approximate a wide range of scatters in biology [51], [52].

3.2.5.1 Basic scattering theory

There are various formulations for scattering, and the one used here considers the medium

to have no absorption and small fluctuations in the density ­ � and compressibility ® � about

constant values ­ � and ® � inside an inhomogeneous volume � . So inside the object:

­ T r W , ­ �¿B ­ �® T r W , ® � B ® �
And outside the object:

­ T r W , ­ �® T r W , ® �
It is convenient to define the following parameters:

À­ T r W , ­ � T r W­ �À® T r W , ® � T r W® �
Then the wave equation becomes [49]:Á 
 � T r � . W ( �© 
 � 
 �� . 
 T r � . W , �© 
 � 
 �� . 
 T r � . W À® T r W B / n=Â s À­ T r W�Ã r�Ä / � T r � . W�u (3.18)

where ©�, �� Å}ÆSÇ#Æ . This equation can be solved by Green’s function method[53] in which the

right hand side is considered as the source term, and the Green’s function is the solution of the
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above equation with right hand side equal to a point source radiator. The solution is:

� T r � . W , � D T r � . W BiÈÊÉw É / . � ÈNËÍÌ �© 
 � 
 �� . 
 T r � � . � W À® T r � W BB / n=Â s À­ T r � W�Ã r Ä / � T r � � . � W�u�ÎÏT r � � r � . � � . W / M r ��Ð (3.19)

WhereÎÏT r � � r � . � � . W ,ÒÑ T . ( . � (ÔÓ 2 Æ w 2: W!�� 0 rÕ(Ör � 0 (3.20)

Solving this integral equation is only possible for some certain simple objects. In the general

case it is possible to solve it only by approximation. The most important approximation is

Born’s approximation. This approximation is valid only when the scattering is weak and bothÀ­ T r W and
À® T r W are very small. If this approximation is not true (at least one of the

À­ T r W orÀ® T r W are not small), then the only way that one can solve this equation is by using numerical

techniques.

Since in the body this approximation may not be true13 , it is not possible to solve it analytically.

The theory of scattering by human tissue has been reviewed by Chivers [54]. Inverse problem

of scattering is another problem which several research groups are working on [52].

3.3 Transmission line

A transmission line is a device for transmitting or guiding energy from one point to another[55],[56].

The energy may be for lighting, heating or performing work, or it may be in the form of signal

information (speech, pictures, data, music). Basically a transmission line has two input termi-

nals into which power (or information) is fed and two output terminals from which power (or

information) is received. Thus a transmission line may be regarded as a four-terminal device.

Transmission lines are everywhere and there are of infinite variety of them .However, regardless

of type, length, or construction, all operate according to the same principles [57].

One easily imaginable transmission line is a deep long straight waterway. If a signal is gener-

13Our knowledge about the human body tissue on the scale less than that of the ultrasound wavelength is very
limited
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ated in one end of the waterway by disturbing the water, this disturbances will propagate in the

waterway and eventually will be received at the other side of the waterway.

The received signal at the end of the waterway is weaker than the generated signal at the be-

ginning of the waterway. This is because the energy in the signal converts to heat during

transmission. The waterway has a characteristic impedance (
A � ).

If there is a rock or island in the waterway, when the water waves reach the island, they will be

reflected back by the island.

If the waterway is infinitely long, then the wave travels in it until it is completely attenuated or

absorbed. If the waterway is not infinite, when the wave reaches the end of the waterway, it is

reflected back by the wall at the end of the waterway. The only way to prevent this reflection

is to have a matching termination at the end of the waterway. This matching termination would

have a matching load impedance (
A^×

) which matches the propagation characteristics of an

infinity long waterway in a tunnel of finite length.

If the waterway length is
�

and the time that it takes for the disturbances to travel the waterway

is
.
, then the wave speed or propagation speed in the waterway can be calculated:

³�, � . (3.21)

The time delay could be specified is three ways:

1. Seconds.

2. Periodic time (T)

3. Phase delay

If the wave consists of two or more frequencies, then the behaviour of the waterway for each

of these frequencies is different. The wave speed is most likely frequency dependent, so some

waves move faster and some waves moves slower in the waterway. This frequency dependent

wave speed is called dispersion. Also the attenuation maybe depends on frequency, so at the end

of the waterway the different components would be received with different amplitude (related

to attenuation) and phase (related on wave speed). This will make the shape of the received

signal different from the original one.
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Figure 3.5: A transmission line can be modelled as a series of interconnected lumped systems.

3.3.1 Modelling Transmission lines with lumped components

As was explained, a transmission line is a distributed system. To understand the wave propa-

gation property of a distributed system, it is better to model it as a series of lumped systems.

Lumped systems are systems whose size is zero, so it takes no time for a wave to propagate

through them. There is no real lumped system in the world but when the size of the system is

very small comparing to the wavelength, then one can assume that they are lumped systems. A

transmission line modelled as a series of lumped systems is shown in fig[3.5].

To do this model, the transmission line is broken to small interconnected transmission lines

with the length of �  
. The length of these small transmission line should be selected so that

the wavelength of the signal in the medium be much larger than the size of each of these

transmission lines. If the wavelength is
�

then:�ÙØ �  
(3.22)

For a linear transmission line, each of these lumped systems can be modelled as a combinations

of inductor, capacitors and resistors. If the transmission line is loss less then there is no resistor

in the model.
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Figure 3.6: Modelling a small section of a transmission line by discrete lumped components.

3.3.1.1 Modelling a lumped system with discrete components

If a transmission line is broken into small sections where the size of each section is much

smaller than the wavelength for the highest frequency in the transmission line, each section can

be modelled as a lumped system. Furthermore this lumped system can be modelled as shown

in fig[3.6].

The value of 	 and
�

depend on the transmission line characteristics.

3.3.1.2 Dispersion in a transmission line

As was shown in fig[3.5] and fig[3.6], a long transmission line can be modelled by a series of

connected 	 and
�

sections. To find the transmission line dispersion effect, it is sufficient to

find the dispersion effect of each small section, since the transmission line dispersion effect is

the sum of the dispersion effect of each of the small sections [58].

The input and output currents and voltages are related to each other as follows:ÚÛ²Ü� DÜ� DÞÝß ,à� ÚÛ²Ü� �Ü� �ÙÝß (3.23)

Where
n

and á indicate input and output respectively. The over-bar is used for showing a phasor

quantity. The ! � ! matrix T is called transmission matrix and is in the general form of:

��, ÚÛ §"¨ � ® 'â] A �L�>� ® ']äã�åçæ Ç�èé §"¨ � ® ' Ýß (3.24)

Where ® is the phase constant and ' is the size of each section.

The T model for each section as shown in fig[3.6], can be broken down to 3 series segments as
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L L

C

T1 T2 T3

Figure 3.7: Breaking down a T model to 3 segments.

shown in fig[3.7]. Since the T section is the cascade of three sections as shown in fig[3.7], T

can be found as follows:

��,à� � � 
 � M (3.25)

Where � � and � 
 and � M are the transmission matrices for the three sections shown in fig[3.7].

Section 1 and 3 are the same, hence their transmission matrices are the same. The transmission

matrix for these two sections is as follow:

� � ,à� M , ÚÛ §"¨ �ëê�ì <
 ] A × �J�>�_ê�ì <
] ã�åçæëízîðïgé�ñ §"¨ � ê�ì <
 Ýß (3.26)

Where
U

is the angular frequency of the wave in the medium and � .
is the time for the wave to

propagate through the section.

It can be shown that the transmission matrix for the middle section � 
 is :

� 
 , ÚÛ � �]´ò�ó æ ízîðïgé�ô � Ýß (3.27)

Substituting the values for � � and � 
 and � M in equation 3.25, and finding the value of T and

comparing it with the general form of � as shown in equation 3.24, the transmission parameter

for the section can be found:§"¨ � T ® ' W ,õ�ö(÷� �L�>� 
 T U ���� W3ø � B Aù×� A :�ú (3.28)

As seen from this equation, the phase constant for the transmission line, ® , is related to the
U

,

the angular frequency of the wave.

44



Wave and sound theory

3.4 Conclusion

Sound waves are mechanical, longitudinal, scalar waves. Electromagnetic waves are non-

mechanical, transverse, vector waves.

When a wave reaches an object in the medium, then there maybe some reflection or scattering.

Reflection is simple to understand and model, but scattering is complex and difficult to model

mathematically.

Any device that guides energy from one point to another is a transmission line. The wave speed

in a transmission line maybe related to its frequency, This is called dispersion.
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Chapter 4
TLM for modelling wave propagation

and its implementation

4.1 Introduction

TLM ( Transmission Line Matrix Modelling ) is a numerical technique for modelling for wave

propagation. TLM was originally used for modelling electromagnetic wave propagation[59],

[60], [61] but since it is based on Huygens principle (see section 4.2.1 on page 48 ) it could be

used for modelling any phenomena which obeys this principle. Researchers showed that TLM

can be used to solve the following problems:� Diffusion problem [62].� Vibration [63]� Heat transfer [64]� Radar [65]� Electromagnetic compatibility [66]

In this chapter, Huygens principle is explained and then it is shown how this principle could

be used to model wave propagation. Two dimensions TLM modelling will be explained in

detailed and one dimensional and three dimensional TLM modelling will be introduced. TLM

can be use in time reversal. This capability is explained in section 4.5 on page 79. Since TLM

was originally designed for electromagnetic waves, in section 4.7 on page 80 the relationship

between these two waves (electromagnetic and ultrasound) will be presented.

4.2 From the Huygens principle to TLM modelling:

TLM modelling is based on the Huygens principle. In this section this principle is explained

and it is shown that the TLM is the discrete version of this principle.
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4.2.1 The Huygens principle

About 300 years ago, Christian Huygens published his principle which is [67], [68]:

All points on a wave front serve as point sources of spherical secondary wavelets.
After a time � the new position of the wave front will be the surface of tangency
to these secondary wavelets.

This principle is shown in fig[4.1]. At time 0 the central point scatters a wave. The wave front

at time
. � is shown in fig[4.1(b)]. At this time (time =

. � ) we can assume that all points on the

wave front are acting as a point sources (shown in fig[4.1(c)]) and the wave front at any time

later ( for example
. 
 ) is the wave front from these secondary point sources (fig[4.1(d)] )

4.2.2 TLM modelling

Johns [59] modelled this principle by sampling the space and representing it with a mesh of

passive transmission line components1 . He modelled the wave propagation as voltage and

current travelling in this mesh. Time was also sampled and the relationship between ��� , the

sample interval and ��' , the sample space, is:

��'),-���Õ	 (4.1)

Where 	 is the wave speed in the medium. In fig[4.2] wave propagation in a two dimensional

TLM mesh is shown.

Assume that at time zero, an impulse is incident to the middle node (fig[4.2(a)]2). This node

scatters the wave to its 4 neighbouring nodes. The scattered wave reaches the neighbouring

nodes at time = ��� (fig[4.2(b)]3). Now these 4 nodes scatter waves to their neighbouring

nodes (fig[4.2(c)]4). At time = ����� the wave front can be found by finding waves scattered

from points in fig[4.2(b)] as shown in fig[4.2(d)]5 . At each time step, each node receives an

1This is two dimension TLM modelling. In section 4.4 ( page 77 ) TLM modelling in one dimension and in
three dimensions will be explained.

2Compare this with fig[4.1(a)] on page 49.
3Compare this with fig[4.1(b)] on page 49.
4Compare this with fig[4.1(c)] on page 49.
5Compare this with fig[4.1(b)] on page 49.
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Figure 4.1: Huygens principle.
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(a) At time ûýüÿþ the centre point scatters a wave. (b) Wave front at time ûýü����
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Figure 4.2: Wave propagation in a two dimensional TLM mesh
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incident wave from its neighbours and scatters it to its neighbours. By repeating the above

calculation for each node, the wave distribution on the medium can be calculated6 .

4.3 Two dimensional TLM modelling

Based on the accuracy and complexity of the modelling medium, one can use 1, 2 or 3 dimen-

sional TLM modelling. Two dimensional TLM modelling is the most popular one as it can

model most of the problems and is more efficient compared to 3 dimensional TLM modelling.

In this section two dimensional TLM modelling is explained in depth and in the section 4.4 (on

page 77) TLM modelling in one and three dimensions will be explain.

4.3.1 TLM modelling of a homogeneous medium

When all sections of a medium have the same properties, the medium is referred as homoge-

neous. For modelling homogeneous media it does not need to consider the medium properties

and hence it is possible to use the simple mesh shown in fig[4.2]. The mesh shown in fig[4.2]

consists of several nodes. The model for one node is shown in fig[4.3]. In this fig, �
	 represents

the incident wave (voltage in the transmission line) and � �
represents the scattered wave.

The relationship between the incident wave ( voltage in transmission line ) and the scattered

wave is:Ú�����Û
�c�� 
� M� �

Ý
�����ß
�
��� � ,

��
Ú�����Û
(¸� � � �� (¸� � �� � (¸� �� � � (_�

Ý
�����ß
Ú�����Û
�c�� 
� M� �

Ý
�����ß
	
�

(4.2)

�
stands for the incident wave voltages and � stands for the scattered wave voltages, K and

K+1 are arbitrary consecutive time steps separated by the sample interval ��� . Based on this

equation, if the magnitude of the wave (voltage in the TLM modelling) is known at any time� ��� then the magnitude of wave in the mesh could be found at time
T � B � W ��� . By repeating

this for each time step, wave propagation could be modeled7.

6TLM implementation will be discussed in section 4.3.6 on page 64
7TLM implementation will be discussed in sec 4.3.6 on page 64.
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(b) Actual model

Figure 4.3: Model for a node in a TLM mesh

4.3.2 TLM modelling of a non homogeneous medium

In the TLM model explained in sec 4.2.2 the wave propagates through a homogeneous medium

and the properties of medium need not be considered. When modelling a non homogeneous

medium, one should consider the properties of the medium in the model. For this reason a new

model for a node is created as shown in fig 4.4 [69][70].

This model is valid when the medium is lossless. When there are some loss in the medium,

there is a resistor in parallel to the capacitor ( fig[4.5] ) to model the loss [71].

For calculating scattering, one should calculate the scattering voltage based on equation 4.2 and

then apply the impedances shown in fig[4.6].

4.3.3 Dispersion of velocity of waves in a TLM mesh

Johns and Beurle [59]showed that the speed of wave propagation in the mesh depends on the

frequency of the wave. They calculate the following dispersion relation for propagation along
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Figure 4.5: Model for a node in a non homogeneous medium when the medium has some losses.
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Figure 4.6: Equivalent circuit for a node in a non homogeneous medium.

the main mesh axes( ? and @ axes in fig4.2):�J�>� T ® F ��'� W , � � �J�>� TVU ��'T ��	 W W (4.3)

® F is the propagation constant. In fig4.7 the resulting ratio of velocities on the matrix and in

free space is shown.

When the wave propagates in axial direction (direction along X or Y axis), the cut-off frequency

is at ì èA , �� (
�

is the free space wavelength of the wave). However, no cut-off occurs in the

diagonal direction, where the velocity of wave is frequency independent as is equal to B� 
 . In

intermediate directions the velocity ratio lies somewhere in between the two curves.

When the wave frequency is so that !����DC �
then the speed of wave in the axial direction is

approximately equal to B� 
 and hence the TLM mesh model an isotropic medium8.

This phenomenon is shown in fig[5.5] on page 90. In chapter 6 on page 121 this phenomenon

is explained in more detail.

8Since there is a sample from signal on every �FE and the wave length is G , then the TLM is an isotropic
propagating medium when the sample per cycle of all frequencies in the medium be much higher than 4 sample per
cycle.
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In conclusion:The TLM network simulates an isotropic propagating medium only as long as all

frequencies are well below the network cutoff frequency, in which case the network propagation

velocity may be considered constant and equal to B� 
 where 	 is the wave speed in free space.

4.3.4 Wave propagation in a TLM mesh

As it was seen in the previous section, the speed of the wave in the medium is equal to B� 
 (when

all frequencies in the medium are well below cutoff frequency). This behaviour is investigate

in more detail in this section.

4.3.4.1 Notations

As the wave propagates in the TLM mesh, it passes thought several nodes to reach to it’s

destination. To show the path that the wave is passing to reach to a point, the following notations

are used. The wave should start from the source and if the wave goes to left one would write L

and if the waves go up he would write U and so R for right and D for down. At each point in

the path the sign of the signal would be calculated (if the signal sign changed at that point the

direction would be written in low case letter: r u l d respectively).

4.3.4.2 Diagonal direction

If the source is at point (50,50) and the receiver at point (51,51), the distance between the source

and the receiver is ì è� 
 . The wave reaches to the receiver at time ����� , There are two path for

wave to reach to the receiver and they are :

1. RU

2. UR

If the source generate an impulse (Delta) signal as defined:

Ñ T �´� W , Y[ \ � �o,��� H . y `�rJI nLK ` (4.4)

The received signal amplitude is � | % . There isn’t any path that the signal can reach to the

receiver with time delay of
� ��� . There are 24 paths that the signal can reach to the receiver
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with time delay of !���� . These paths are shown in table[4.1].

# Path Amplitude # Path Amplitude # Path Amplitude

1 RRlU -0.062500 2 RRUL 0.062500 3 RlrU 0.062500

4 RlUR -0.062500 5 RURl -0.062500 6 RULr -0.062500

7 RUUd -0.062500 8 RUdu 0.062500 9 RDuU -0.062500

10 LrRU -0.062500 11 LrUR -0.062500 12 LURR 0.062500

13 URRl -0.062500 14 URlr 0.062500 15 URUd -0.062500

16 URDu -0.062500 17 ULrR -0.062500 18 UURD 0.062500

19 UUdR -0.062500 20 UdRU -0.062500 21 UduR 0.062500

22 DRUU 0.062500 23 DuRU -0.062500 24 DuUR -0.062500

Table 4.1: Paths from source to point as shown in fig[4.8] with time delay of
��
 ì��

The wave comes with positive sign from 8 of these paths and with negative sign from 16 of

these paths, the received signal at the receiver is -0.05. These signal is very weak comparing

to the original signal that reaches to the receiver with time delay of 2 and so it has negligible

effect on the output. The signals that reaches to this point with time delay of 6, 8, 10 ,.. are

much weaker. Since all other signals other than the signal that reaches to the receiver with time

delay of 2 are very weak, it is possible to ignore them and assume that the signal reaches to the

receiver only with time delay of ����� .9 The reason that the speed in diagonal direction is B� 

can bee seen in fig[4.8]. The wave reaches to point A at time = ����� but its distance from the

source (point O) is only � ����� . The speed can be calculated as follow:

� , �Ùn�K . Ä��ä©"`� nt� ` (4.5)� , ��� � � ���� � � (4.6)� , ������ � �� � (4.7)� , 	� � (4.8)

9It is an approximation and to show how one may calculate the speed in diagonal direction. It would show later
that this method doesn’t show why the speed in the axial direction is related to speed and hence isn’t a good method
for studying speed in the TLM mesh.
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Figure 4.8: Wave will reach to point A at time ����� But the distance between point O and A is
only � ���Ï� .

4.3.4.3 Axial direction

In the axial direction, it is much more complicated since the wave will reach to a point at �����
at time ����� , so it seems that the speed of wave in this direction should be 	 and not B� 
 as

shown in fig[4.9].

But a more careful investigation of how wave will be propagated in the medium would show

that this theory isn’t correct. This investigation can be done by finding how the wave will be

received at any specific point in the medium. The selected point is shown in fig[4.10]. The

distance between this point and the source is ������� . The first signal reaches to this point at time������� . This path from source to the point is clearly the shortest one and is the line between

these two point. If the source generate an impulse (Delta) signal as defined:

Ñ T �´� W , Y[ \ � ��,a�� H . y `#rJI n�K ` (4.9)

The received signal at point A at this time ( ����� .
) is:T �� W ��� ,am | $ &�%�&���%J� w �5� � (4.10)
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AO

Figure 4.9: Wave will reach to point A at time ����� and the distance between point O and A is����� .

AO

Figure 4.10: The distance between point A and source is ������� .
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There isn’t any path that the signal can move along and reach to point A with time delay of���#��� . When the time delay is �#����� there are 144 paths. All of these paths shown in table

4.2.

# Path Amplitude # Path Amplitude # Path Amplitude

1 RRRRRRRRRRRl -0.000244 2 RRRRRRRRRRlr 0.000244 3 RRRRRRRRRRUd -0.000244

4 RRRRRRRRRRDu -0.000244 5 RRRRRRRRRlrR 0.000244 6 RRRRRRRRRURD 0.000244

7 RRRRRRRRRUdR -0.000244 8 RRRRRRRRRDRU 0.000244 9 RRRRRRRRRDuR -0.000244

10 RRRRRRRRlrRR 0.000244 11 RRRRRRRRURRD 0.000244 12 RRRRRRRRURDR 0.000244

13 RRRRRRRRUdRR -0.000244 14 RRRRRRRRDRRU 0.000244 15 RRRRRRRRDRUR 0.000244

16 RRRRRRRRDuRR -0.000244 17 RRRRRRRlrRRR 0.000244 18 RRRRRRRURRRD 0.000244

19 RRRRRRRURRDR 0.000244 20 RRRRRRRURDRR 0.000244 21 RRRRRRRUdRRR -0.000244

22 RRRRRRRDRRRU 0.000244 23 RRRRRRRDRRUR 0.000244 24 RRRRRRRDRURR 0.000244

25 RRRRRRRDuRRR -0.000244 26 RRRRRRlrRRRR 0.000244 27 RRRRRRURRRRD 0.000244

28 RRRRRRURRRDR 0.000244 29 RRRRRRURRDRR 0.000244 30 RRRRRRURDRRR 0.000244

31 RRRRRRUdRRRR -0.000244 32 RRRRRRDRRRRU 0.000244 33 RRRRRRDRRRUR 0.000244

34 RRRRRRDRRURR 0.000244 35 RRRRRRDRURRR 0.000244 36 RRRRRRDuRRRR -0.000244

37 RRRRRlrRRRRR 0.000244 38 RRRRRURRRRRD 0.000244 39 RRRRRURRRRDR 0.000244

40 RRRRRURRRDRR 0.000244 41 RRRRRURRDRRR 0.000244 42 RRRRRURDRRRR 0.000244

43 RRRRRUdRRRRR -0.000244 44 RRRRRDRRRRRU 0.000244 45 RRRRRDRRRRUR 0.000244

46 RRRRRDRRRURR 0.000244 47 RRRRRDRRURRR 0.000244 48 RRRRRDRURRRR 0.000244

49 RRRRRDuRRRRR -0.000244 50 RRRRlrRRRRRR 0.000244 51 RRRRURRRRRRD 0.000244

52 RRRRURRRRRDR 0.000244 53 RRRRURRRRDRR 0.000244 54 RRRRURRRDRRR 0.000244

55 RRRRURRDRRRR 0.000244 56 RRRRURDRRRRR 0.000244 57 RRRRUdRRRRRR -0.000244

58 RRRRDRRRRRRU 0.000244 59 RRRRDRRRRRUR 0.000244 60 RRRRDRRRRURR 0.000244

61 RRRRDRRRURRR 0.000244 62 RRRRDRRURRRR 0.000244 63 RRRRDRURRRRR 0.000244

64 RRRRDuRRRRRR -0.000244 65 RRRlrRRRRRRR 0.000244 66 RRRURRRRRRRD 0.000244

67 RRRURRRRRRDR 0.000244 68 RRRURRRRRDRR 0.000244 69 RRRURRRRDRRR 0.000244

70 RRRURRRDRRRR 0.000244 71 RRRURRDRRRRR 0.000244 72 RRRURDRRRRRR 0.000244

73 RRRUdRRRRRRR -0.000244 74 RRRDRRRRRRRU 0.000244 75 RRRDRRRRRRUR 0.000244

76 RRRDRRRRRURR 0.000244 77 RRRDRRRRURRR 0.000244 78 RRRDRRRURRRR 0.000244

79 RRRDRRURRRRR 0.000244 80 RRRDRURRRRRR 0.000244 81 RRRDuRRRRRRR -0.000244

82 RRlrRRRRRRRR 0.000244 83 RRURRRRRRRRD 0.000244 84 RRURRRRRRRDR 0.000244

85 RRURRRRRRDRR 0.000244 86 RRURRRRRDRRR 0.000244 87 RRURRRRDRRRR 0.000244

88 RRURRRDRRRRR 0.000244 89 RRURRDRRRRRR 0.000244 90 RRURDRRRRRRR 0.000244

91 RRUdRRRRRRRR -0.000244 92 RRDRRRRRRRRU 0.000244 93 RRDRRRRRRRUR 0.000244

94 RRDRRRRRRURR 0.000244 95 RRDRRRRRURRR 0.000244 96 RRDRRRRURRRR 0.000244

97 RRDRRRURRRRR 0.000244 98 RRDRRURRRRRR 0.000244 99 RRDRURRRRRRR 0.000244

100 RRDuRRRRRRRR -0.000244 101 RlrRRRRRRRRR 0.000244 102 RURRRRRRRRRD 0.000244

103 RURRRRRRRRDR 0.000244 104 RURRRRRRRDRR 0.000244 105 RURRRRRRDRRR 0.000244

106 RURRRRRDRRRR 0.000244 107 RURRRRDRRRRR 0.000244 108 RURRRDRRRRRR 0.000244

109 RURRDRRRRRRR 0.000244 110 RURDRRRRRRRR 0.000244 111 RUdRRRRRRRRR -0.000244

112 RDRRRRRRRRRU 0.000244 113 RDRRRRRRRRUR 0.000244 114 RDRRRRRRRURR 0.000244

115 RDRRRRRRURRR 0.000244 116 RDRRRRRURRRR 0.000244 117 RDRRRRURRRRR 0.000244

118 RDRRRURRRRRR 0.000244 119 RDRRURRRRRRR 0.000244 120 RDRURRRRRRRR 0.000244
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Figure 4.11: A graphical demonstration of path RRRRRRRURDRR ( path number 20 in table
4.2).

# Path Amplitude # Path Amplitude # Path Amplitude

121 RDuRRRRRRRRR -0.000244 122 LrRRRRRRRRRR -0.000244 123 URRRRRRRRRRD 0.000244

124 URRRRRRRRRDR 0.000244 125 URRRRRRRRDRR 0.000244 126 URRRRRRRDRRR 0.000244

127 URRRRRRDRRRR 0.000244 128 URRRRRDRRRRR 0.000244 129 URRRRDRRRRRR 0.000244

130 URRRDRRRRRRR 0.000244 131 URRDRRRRRRRR 0.000244 132 URDRRRRRRRRR 0.000244

133 UdRRRRRRRRRR -0.000244 134 DRRRRRRRRRRU 0.000244 135 DRRRRRRRRRUR 0.000244

136 DRRRRRRRRURR 0.000244 137 DRRRRRRRURRR 0.000244 138 DRRRRRRURRRR 0.000244

139 DRRRRRURRRRR 0.000244 140 DRRRRURRRRRR 0.000244 141 DRRRURRRRRRR 0.000244

142 DRRURRRRRRRR 0.000244 143 DRURRRRRRRRR 0.000244 144 DuRRRRRRRRRR -0.000244

Table 4.2: Paths from source to point as shown in fig[4.10] with time delay of
��
 ì��

For example path for RRRRRRRURDRR (path number 20 in table 4.2) shown in fig[4.11].

The received signal with a time delay of �#����� can be calculated by adding the amplitudes for

all of these paths, which is equal to � | � ! � $ % ��� w �5�5
 . Compared to the received signal for time

delay ������� , even though that the received signal from each path is weaker, there are more

paths, so the total signal that will be received is stronger.

If one tries to find paths for time delays �"!���� 10, one would find that there are 8281 paths

from the source to receiver at point (10,0). The signal from 4856 paths will be received with a

positive sign and from 3416 paths it will be received with a negative sign. The amplitude of the

received signal from each path is & | ��� � %ð�#&J� w �5�5+ and the total received signal at point (10,0)

with time delay 14 is:

10There isn’t any path with time delay 13
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1 ��� , !�°�%�& � & | ��� � %ð�#&J� w �5�5+ ( � !¢�#& � & | ��� � %ð�#&J� w �5�5+ (4.11)1 ��� , T !�°�%�&«( � !¢�#& W � & | ��� � %ð�#&J��w �5�5+ (4.12)1 ��� , �"!�!�m � & | ��� � %ð�#&J� w �5�5+ (4.13)1 ��� , ° | °K! � m�mK!���w �5�5
 (4.14)

Comparing this with time delay �#����� , it could be seen that the signal amplitude is stronger.

The reason is that even if the signal from any one path is weaker, there are more paths than

before and this compensates the fact that the signal from each path is weaker. By doing the

same procedure for time delay �#&���� it could be seen that the signal for this time delay ( �#&���� )

is weaker than signal for time delay �"!���� . The received signals for time delays greater than�"!���� are weaker than received signal for time delay �"!���� . Table 4.3 show this phenomena

in detail. The case for time delay �#°���� is different. If the received signal for this time delay

Delay Total paths + paths - paths Path amplitude Total amplitude������� 1 1 0 m | $ &�%�&���%J� w �5� � m | $ &�%�&���%J� w �5� ��#����� 144 120 24 � | !�!¢�"!���&J� w �5� � � | � ! � $ % ��� w �5�5
�"!���� 8281 4865 3416 & | ��� � %ð�#&J� w �5�5+ ° | °K! � m�mK!�� w �5�5
�#&���� 313600 157152 156448 � | %���%�°�$ mJ� w �5�5+ � | ��$z!��ð�#mJ� w �5�5
�#°���� 9363600 4666248 4697352
� | °ð�"!�&�m�$�� w �5��� (¸� | �#°�&�%�� � � w �5�q�

Table 4.3: Comparison between received signal with different time delay.

is calculated it is stronger than the received signal for time delay �"!���� but the sign of the

received signal is negative . As the number of paths is increasing rapidly, it is not possible to

find a clear understanding of how the received signal is generated based on the source signal.

4.3.5 TLM mesh as a digital filter

Since TLM algorithm is an iterative algorithm, the author suggested to model it as a digital

filter11 . Each node can be modelled as a digital filter with four input and four output. The

TLM mesh is an interconnected mesh of these four input / four output digital filters. This

11This modelling is very important since when a TLM mesh is modelled as a digital filter, one may think of why
the sampling rate theory which tells that it would be possible to recreate a signal with only two sample per cycle
does not work here and also one may try to find to a transfer function for the TLM mesh. All of these investigations
leads the investigator to find a new sampling rate theory which is explained in chapter 6 on page 121.
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(a) The TLM mesh as a interconnected mesh of dig-
ital filters.

V2k

V2k+1 V4K

V4k+1

V3k+1V3k

V1k+1 V1K

(b) One node in a TLM mesh as a four input/ four
output digital filter.

Figure 4.12: The TLM mesh can be modelled as an mesh of interconnected digital filters.

shown in fig[4.12].

For finding the digital filter model for a node, the equation 4.2 which is in matrix format, could

be written in the following form:

�<� � �� 2 , �� T ( � �� D Bi� �
 D Bi� �M D Bi� �� D W (4.15)� � � �
 2 , �� T � �� D ( � �
 D Bi� �M D Bi� �� D W (4.16)�<� � �M 2 , �� T � �� D BÊ� �
 D ( � �M D Bi� �� D W (4.17)� � � �� 2 , �� T � �� D BÊ� �
 D Bi� �M D ( � �� D W (4.18)

To make it more like an iterative algorithm it could be written as:

�c� 2 T £ B � W , �� T ( �c� D T £ W Bi�ý
 D T £ W Bi� M D T £ W B�� � D T £ W5W (4.19)� 
 2 T £ B � W , �� T � � D T £ W ( � 
 D T £ W BÊ� M D T £ W Bi� � D T £ W5W (4.20)� M 2 T £ B � W , �� T � � D T £ W Bi� 
 D T £ W ( � M D T £ W Bi� � D T £ W5W (4.21)� � 2 T £ B � W , �� T �c� D T £ W Bi�ý
 D T £ W BÊ� M D T £ W ( � � D T £ W5W (4.22)
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V1K+1
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Figure 4.13: The digital filter realization for
�� of a node.

Each of these equations can be realized by a digital filter as shown in fig[4.13]. By combining

the four section of a node to each other the model for a whole node can be created as shown in

fig[4.14].

4.3.6 Implementing a TLM model

Since TLM is a numerical model, it should be implemented in software or hardware. Imple-

menting it in software is the fastest way to create a model but by implementing it in hardware,

the fastest way for modelling wave propagation could be obtained.

The algorithm for implementing TLM in software and hardware is approximately the same. It

consist of two steps:

Incident: At this step the value of output voltages for next time step will be calculated. It could
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Figure 4.14: The Digital filter realization for a node.
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be done by using the following set of formula:

� � � �� 2 , �� T ( � �� D Bi� �
 D Bi� �M D Bi� �� D W (4.23)��� � �
 2 , �� T � �� D ( � �
 D Bi� �M D Bi� �� D W (4.24)� � � �M 2 , �� T � �� D Bi� �
 D ( � �M D Bi� �� D W (4.25)��� � �� 2 , �� T ���� D Bi�<�
 D Bi�O�M D ( ���� D W (4.26)

Scattering: At this step, the output voltage from each node would be used as the input of the

neighbouring nodes. This could be done by using the following set of formulae:

� FK�S?J4�� ¤J� ¥ � ���M , � F �7?L4�� ¤J� ¥ �� (4.27)� FK�S?J4�� ¤ � � � ¥ �� , � F �7?L4�� ¤J� ¥ �
 (4.28)� FK�S?J4�� ¤J� ¥ w ���� , � F �7?L4�� ¤J� ¥ �M (4.29)� FK�S?J4�� ¤ w � � ¥ �
 , � F �7?L4�� ¤J� ¥ �� (4.30)

This is shown in fig[4.15].

These formulae are for two dimensional TLM. For one dimensional and three dimensional

TLM modelling, the steps are the same but the number of input and output voltages is different,

depending on the number of dimensions being modelled, for example for one dimensional TLM

modelling we have only two voltages and hence the formula will be reduced to two formulae

for each step.

4.3.6.1 In a single CPU computer

When working with a single CPU, all of the processing is done in one CPU and hence the same

algorithm could be repeated for all nodes in the medium.

There are two type of algorithms for implementation of TLM :

Speed optimized: This model has the fastest possible speed.

Memory optimized: This model uses the least possible memory.
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Figure 4.15: Node placement for scattering step.
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4.3.6.2 Speed optimized implementation

In this type of implementation, more memory will be used but the number of executed instruc-

tion is less, so it is faster than the other version of this algorithm.

In this algorithm, there is 8 memory locations for each node. Four of these memory locations

are for input voltages and the other four locations are for output voltages. During the incident

step, the value of the next output voltages are calculated based on input voltages and put in the

memory locations that are reserved for these output voltages. In the scattering step, the output

voltages of each node is applied as the input voltages for neighbours nodes. The algorithm is

as follow:

Require: 8 memory location for each node.

1: Initialize memory locations.

2: for all time steps in simulation time do

3: for all nodes in the mesh do

4: Calculate the output voltages and put them in output voltage memory locations.

5: for all nodes in the mesh do

6: Exchange voltages between nodes. Put output voltages to the input of neighbouring

node.

7: end for

8: end for

9: end for

The total memory needed to model a medium with N nodes and T time steps is:� ` � ázr t ,a° ��� (4.31)

For calculating each output for each node (incident section) and exchange it with neighbouring

nodes (scattering section), the following operations should be done12:

1 /�/ n . n áK� K , � � (4.32)��� � . n�� � n ©"Ä . n áK� K , ! (4.33)� ` � ázr t � á Â ` � `�� . K , ! (4.34)

12The additions are 16 for incident calculation and 4 to find neighbouring nodes.
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So the number of operations that should be done to finish a TLM modelling with N nodes and

T time steps would be:

1 /�/ n . n áK� K , � � ��� � � (4.35)��� � . n�� � n ©"Ä . n áK� K , ! ��� � � (4.36)� ` � áKr t � á Â ` � `#� . K , ! ��� � � (4.37)

This algorithm is useful when one wants to model a small mesh for a long time. In this situation,

since a small mesh is modelled , hence the increase in memory is not important. It is also good

for implementing in hardware as the operations at each node are separated from operations at

all other nodes. One way for designing a hardware implementation of TLM model is to design

a small CPU for each node with 8 memory location on it and then interconnect these small

CPUs to each other to make a mesh.

4.3.6.3 Memory optimized implementation

With this algorithm, less memory will be used but the number of operations is higher (com-

pared with the previous algorithm ). There is only need for 4 memory locations for each node.

The number of operations is higher since some kind of temporary memory for holding data

during operations should be used and then these temporary data should be returned to origi-

nal memory locations which adds some memory moves to the operation. The algorithm is as

follow:

Require: 4 memory locations for each node and 4 temporary memory locations.

1: Initialize memory locations.

2: for all time steps do

3: for all nodes in the mesh do

4: Calculate all of the output voltages and put them in temporary memory locations.

5: Transfer the content of the temporary memory locations to the input voltages loca-

tions.

6: for all nodes in the mesh do

7: TMP � � FK�S?J4�� ¤J� ¥ ��
8: � FK�S?J4�� ¤J� ¥ �� � � F �7?L4�� ¤J� ¥ � ���M
9: � FK�S?J4�� ¤J� ¥ � ���M � � �� 
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10: TMP � � F �S?J4�� ¤J� ¥ �

11: � F �S?J4�� ¤J� ¥ �
 � � F �S?J4�� ¤ � � � ¥ ��
12: � F �S?J4�� ¤ � � � ¥ �� � � �� 
13: end for

14: end for

15: end for

In this algorithm 4 memory locations is needed for each node, so in the case of modelling a

mesh with N node, the total memory needed is:

� ` � ázr t ,a° ��� (4.38)

The number of operations needed to process on each node is:

1 /�/ n . n áK� K , � � (4.39)��� � . n�� � n ©"Ä . n áK� K , ! (4.40)� ` � ázr t � á Â ` � `�� . K , ��� (4.41)

So the number of operations required to finish a TLM modelling with N nodes and T time steps

would be:

1 /�/ n . n áK� K , � � ��� � � (4.42)��� � . n�� � n ©"Ä . n áK� K , ! ��� � � (4.43)� ` � ázr t � á Â ` � `�� . K , ��� ��� � � (4.44)

This algorithm is a good algorithm when one wants to model a big mesh over a short time steps.
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4.3.6.4 In a parallel computer

Since TLM needs a large amount of memory and CPU power to model wave propagation, it is

impossible to model a real wave propagation problem with normal computers13 . For example

if the size of the medium that we want to model is 1cm by 1cm by 1cm and we are using three

dimensional TLM modelling and the speed of wave in the medium is �#% ��� � ¡ 14 and the wave

frequency be 1.5 MHZ15 then:

¢ Ä Â `#�H`�� Ã . y , � � `z` /£ r�`"¤ � `��ä© t (4.45)¢ Ä Â `#�H`�� Ã . y , �#% ���� | % � ��� � (4.46)¢ Ä Â `#�H`�� Ã . y , ��� w M T � W
(4.47)

For creating a homogeneous medium, there is a need to model with at least 50 sample per

cycle16, so we need ( SPC = Sample Per Cycle ) :

� �¥� p"`�rÞá � �äá / ` K , K�n � `¦? � �   	¢ Ä Â `#�H`#� Ã . y � K�n � `¦@ � �   	¢ Ä Â `#�H`�� Ã . y � K#n � ` A � �   	¢ Ä Â `#�H`#� Ã . y (4.48)� �¥� p"`�rÞá � �äá / ` K , ��� w 
 � % ���� w M � ��� w 
 � % ���� w M � ��� w 
 � % ���� w M (4.49)� �¥� p"`�rÞá � �äá / ` K , � | ��% � ����§ (4.50)

If for storing each data we use 8 bytes (double precision) then each node needs 32 bytes of

memory and the memory needed for modelling is:

13At the time of this writing, a good workstation has 512 Mega-byte of RAM.
14Approximately the speed of sound in the water [48], [38].
15The normal frequency for medical ultrasound imaging.
16In chapter 6 on page 121 a new sampling rate theory will be explained which will dramatically reduce this

number.
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� ` � ázr t ��`z` / ` / , � �¨� p"`�r3á � �äá / ` K � � � (4.51)� ` � ázr t ��`z` / ` / , � | ��% � ��� § � � � (4.52)� ` � ázr t ��`z` / ` / , ! � ����© (4.53)� ` � ázr t ��`z` / ` / , ! Î7ª t . ` (4.54)

This amount of memory is available only in parallel computers17 . For this reason, especially

when the model is 3 dimensional, the modelling should be done in parallel computers.

For modelling in a parallel computer18 , we divide a medium to some sections and then process

each section on one CPU, the result of these process would be exchanged with each other. In

fig[4.16], the medium that we want to model is shown. Before we can divide the medium we

should find out how many CPU’s are avaliable19 . If we have N CPU’s we should divide the

medium into N sections. The best way is to divide it in a symmetrical way20. In fig[4.17] this

division for some number of CPU is shown. After dividing the medium to sub-media, each

processor models one sub-media. At the boundary, when it is necessary to exchange data with

next sub-media, the data is put in a buffer. when the processing for one incident step is fin-

ished, the buffer on each CPU is exchanged with the corresponding buffer in the neighbouring

CPU. Since it is very difficult to show this procedure in 3D, A 2 dimensional model is shown

in fig[4.18]. The modelling starts by setting up the buffer and medium node data to initial con-

ditions (fig[4.18(a)]). During the incident step, when any node at the boundary needs data from

a neighbouring node which resides on a different CPU, it should get it from the corresponding

buffer (fig[4.18(b)]) After the incident step, the scattering step for all nodes in the sub medium

would be done. The scattering data from a node on the boundary that would be written to

a node in a medium on another CPU, should be written to the buffer (fig[4.18(c)]). Then the

buffer on each CPU would be exchanged with the corresponding buffer in the neighbour CPU21

(fig[4.18(d)]). This process would be repeated for all time steps.

17It should be noted that it is true at the time of writing.
18The exact algorithm that should be used in a parallel computer depends of type of parallel computer in use and

the language that the software wants to write with it. There are some other types of algorithms for different parallel
computer structure [72] [73]. MPI (Message Passing Interface) was used for writing parallel codes that can be run
on several platforms [74] and the programming language is C.

19In MPI use command: MPI Comm size().
20In MPI use command: MPI Dims create().
21In MPI use commands: MPI Isend() and MPI Irecv()
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Figure 4.16: A 3 dimension medium for modelling.

Dead lock Dead lock happens in parallel programming22 when one CPU is waiting for an-

other CPU and the other CPU for some reason is waiting for the first CPU (see fig[4.19]). In

the simplest form, CPU A is waiting for CPU B (for example to receive data from it) and CPU

B is waiting for CPU A as shown in fig[4.19(a)]. In a more complex format of dead lock, CPU

A is waiting for CPU B when CPU B is waiting for CPU C and ... CPU X is waiting for CPU

A as shown in fig[4.19(b)].

Deadlock should be solved by using some of the parallel computer features23 . If the parallel

computer feature can’t help us to solve the problem, the following algorithm can solve it. It

will be explained for changing the buffers among the CPUs in the X direction. It can be simply

extended to exchange buffers in Y and Z directions. The CPUs should be numbered in X

direction. The odd numbered CPUs use the following algorithm:

Require: Odd numbered CPU (CPU number is 2n+1)

1: Send corresponding buffer to CPU number 2(n+1)

22Theoretically this problem shouldn’t be in a serial program.
23In MPI, data would be sent in a non blocking format and then after sending all of the buffers (4 buffer for 2D

modelling and 6 buffer for 3D modelling) the program should wait to receive data from the other CPUs.
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Figure 4.17: Division of the medium to sub-media.
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(c) During the scattering step, data from a node
on boundary which wants to go to a node on a
sub-media on a different CPU would be written
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(d) At the end of scattering on each sub-media,
the buffers between two adjacent sub-media
would be exchanged with each other.

Figure 4.18: Algorithm for modelling in a parallel computer.
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Figure 4.19: Dead lock in modelling with a parallel computer.
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Figure 4.20: TLM modelling in one dimension.

2: Receive buffer from CPU number 2(n+1)

3: Send corresponding buffer to CPU number 2n

4: Receive buffer from CPU number 2n

The even numbered CPUs should use the following algorithm:

Require: Even numbered CPU (CPU number is 2n)

1: Receive buffer from CPU number 2n-1 and put it in a temporary buffer.

2: Send corresponding buffer to CPU number 2n-1

3: write the value of temporary buffer to original buffer.

4: Receive buffer from CPU number 2n+1 and put it in a temporary buffer.

5: Send corresponding buffer to CPU number 2n+1

6: write the value of temporary buffer to original buffer.

It should be noted that efficiency of these algorithms depends on the parallel computer hardware

and software and is outwith the scope of this writing.

4.4 One dimensional and three dimensional TLM modelling

The two dimensional TLM modelling was explained in detail in the previous section. TLM

modelling in one dimension and three dimensions is explained here briefly. Most of the theories

for 2 dimensional modelling can easily be extended to one dimensional and three dimensional

modelling.

4.4.1 One dimensional TLM modelling

One dimensional TLM modelling is very similar to the transmission lines explained in section

3.3. A one dimensional TLM model is shown in fig[4.20].
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Figure 4.21: TLM modelling in three dimensions [9].

4.4.2 Three dimensional TLM modelling

In three dimensional TLM modelling, each node connects to 6 neighbouring nodes as shown in

fig[4.21].

The node model depends on the wave type: vector wave or scalar wave.

Since electromagnetic waves are vector waves, the node model for them is very complex. Since

the sound waves are scalar waves, it is possible to use a scalar TLM to model them. The node

model for a scalar TLM model is shown in fig[4.22].
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Figure 4.22: Node model for scalar TLM modelling.

The relationship between input voltages to each node and scattered voltages from each node is:Ú�����������Û
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4.5 Inverse TLM modelling

Sorrentino and Hoefer [75]showed that the TLM can be reversed . They showed that the trans-

mission matrix for each node � and its inverse � w � are equal (This assumes a linear, Homoge-
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neous medium) :

� , � w � (4.56)

� ,
Ú�����Û
(¸� � � �� (_� � �� � (¸� �� � � (¸�

Ý
�����ß
This means that it should be possible to use the TLM modelling algorithm for inverse TLM

modelling [76].

When we are working with inverse TLM modelling, we are working in inverse time so that we

can work backward in time to find the source from a knowledge of its wave fields [77],[78],[79].

4.6 Other topics in TLM modelling

4.6.1 Modelling non linear waves with TLM

By replacing C and/or L to a nonlinear device, The TLM can be used to model non linear waves

[80].

4.6.2 Different type of meshes

The TLM mesh that was explained here was square meshes, There are some active research on

other types of meshes [81].

4.7 TLM modelling of ultrasound wave propagation

The TLM was originally used for modelling electromagnetic wave propagation. In electro-

magnetic wave propagation modelling , the electric and magnetic waves are modelled in the

transmission line by voltage and current respectively. For modelling the ultrasound wave prop-

agation we can use the similarity between the electromagnetic waves and ultrasound waves

(Table 4.4)[82], [83].
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Then the mechanical ultrasound wave is modelled electrically as an equivalent electromagnetic

wave. This follows a long establishment practice of modelling mechanical systems as electrical

analog.

Electromagnetic Wave Ultrasound Wave
Electric Field Pressure Field

Magnetic Field Displacement Field
Current Velocity

Permittivity ( « ) Compressibility ( ¬ )
Permeability ( ­ ) Density ( ® )

Table 4.4: Similarity between Electromagnetic waves and Ultrasound waves

4.8 Conclusions

TLM is a numerical technique for modelling wave propagation. It is an efficient technique that

can be implemented not only in single CPU computers but also in parallel computers.

TLM mesh can be modelled as a digital filter. For a two dimensional TLM modelling, each node

can be modelled as a four input- four output digital filter and the TLM mesh can be modelled

as a connection between these digital filters.

Since sound waves are scalar waves, scalar three dimensional TLM can be used for modelling

wave propagation.

Inverse TLM is TLM in time reversal. Inverse TLM could be used to find the origin of a wave

propagation when the wave distribution in the medium is known.

TLM can be used to model ultrasound wave propagation as well as electromagnetic waves.
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Chapter 5
Experiments with TLM

5.1 Introduction

In this chapter TLM is used to model some wave propagation phenomena. In most of cases

a point source is placed in the medium and the shape of wave propagation is saved frame by

frame. Some of these frames will be shown here. By using all of the frames movies were

created showing how the waves propagate. Since it is only possible to show a few frames in

this thesis animations has been included on a CD that comes with the thesis. This chapter deals

with the use of TLM for modelling wave scattering from a small object, wave reflection from

a large object, wave interference, array transducers and the Doppler effect. First the set up is

explained, since the setup and the notation is the same for all of the modelling examples.

5.2 Experimental setup, input, output and notation

In this section modelling setup is explained, including how input or output is generated and the

notation that is used.

5.2.1 The modelling setup

All of the modelling examples in this chapter are done by a TLM modelling library developed

by the author in C++. The library is in pure C++ and can be compiled on any platform. Here,

a PC computer with an AMD K5 processor running at 166 MHZ was used. The computer

has 128 Mbyte of RAM. The library is fast enough and uses the ”Low memory” technique as

explained in section 4.3.6.3 on page 69.

All of the modelling is of a 2 dimension TLM. The medium size is always normalized by ��� so

when the medium size mentioned as ����� � ����� , it means that the medium size is ��������� � ��������� .
All of the address in the medium is relative to bottom left corner of the medium. For example

point ( 50,100 ) in a medium with size ����� � � ��� is exactly in the middle of the medium.
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The modelling time is also normalised by ��� . A modelling time of ����� means that the mod-

elling time is ��������� .

5.2.2 Inputs

Since this is digital modelling, all of the signals is injected to the medium should be in digital

form. The most important signal that is injected into the system is a sinusoidal signal. The peak

amplitude of the sinusoidal signal is always 1 and its frequency expressed based on the number

of samples per cycle. For example if the number of samples per cycle of the sinusoidal signal is

20, it will be expressed as ”a sinusoidal signal with 20 samples per cycle or in the short form as

a 20 samples sinusoidal”. If the sinusoidal signal isn’t continuous the duration of the signal will

be expressed in terms of samples too. For example ”a 20 sample sinusoidal signal with duration

of 100” means that a sinusoidal signal that is sampled at 20 samples per cycle is injected into

the system for the duration of 100 samples ( There would be 5 cycles of the sinusoidal signal

in the injected signal.).

5.2.3 Modelling output

The output of the modelling process will be presented in one of the followings way:

Time amplitude graph This graph shows the received signal at one of the medium points

during modelling time.

Frame by frame Here the signal power at each point in the medium is saved at a specific time.

These values are used to draw some 2 dimensions or 3 dimensions figures.

5.2.3.1 Time amplitude graph

As an example to this type of output, assume that a receiver is placed at the point (50,60) and a

point source at the point (50,50) in a medium with size ����� � ����� as shown in fig[5.1].

A 20 samples sinusoidal signal with the duration of 100 samples is used as the source signal and

the corresponding signal at the receiver is saved. The signal at the source place1 and received

signal are shown in fig[5.2]. The horizontal axis is time in ��� and the vertical axis is amplitude.

1This is the signal as seen by a receiver at the source place and not the generated signal by the source.
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ReceiverSource

Figure 5.1: Medium setup for modelling example.
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Figure 5.2: Signal at the source point and received signal for modelling example.

From this simple example the following properties of TLM modelling can be determined:

1. The time delay between the received signal and source signal is 14, which is equal to��� � � � . So the speed in the medium is B� 
 . Where 	 is the speed of wave in the real

medium.

2. The received signal is much weaker than the source signal.

3. After the main signal, there is a very weak signal with a frequency equal to the natural

frequency of the TLM which is a sinusoidal signal with four sample in a cycle.

5.2.3.2 Frame by frame

In this type of presentation, one image per time step is created. Since there are three variables:

X,Y and Amplitude, data can be drawn in several ways. Two ways used here: Colour code and

3 Dimensions.

Colour code: In this type of presentation, the amplitude of signal at each point is converted
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Figure 5.3: wave propagation in a medium by using Colour code drawing (Time difference
between each two pictures is 5 ��� ).

to a colour and a 2 dimensional picture of the medium is created. It is important to

understand how these pictures are created. The following steps were used:

1. At the end of each time step in the TLM modelling, the amplitude in each point is

calculated by adding the 4 voltages incident on the node.

2. The absolute value for the amplitude of each node is used and converted to RGB

(Red , Green , Blue ) colour codes.

3. These values are used to create an image file in PPM format

(see http://www.swin.edu.au/astronomy/pbourke/dataformats/ppm/ )

4. ImageMagick (http://www.simplesystems.org/ImageMagick/) was used to convert

them to EPS format and then adding them to this thesis.

In fig[5.3] a sample output is shown. The time difference between adjacent pictures is%���� . This kind of representation is good when the propagation shape needs to be shown.

3 Dimensional: In this type of representation, amplitude is use on the Z axis to create a 3

dimensional image. This type of images is created by using the following steps:

1. At the end of each time step in TLM modelling, the amplitude in each point is

calculated by adding the 4 voltages incident on the node.

87



Experiments with TLM

2. For each frame, the node amplitudes are saved in a file.

3. GNUPLOT (http://www.gnuplot.org/) is used to draw a 3 dimension graph based

on the each file (one graph for each frame).

4. The graphs are exported in EPS format for adding to this thesis.

This type of representation is good for representing wave amplitude at different points in

the medium.

Movie: It is possible to create a movie based on a series of related frames. A movie was created

showing how a wave propagates in the medium. For creating these movies, Mpeg2enc

(http://www.mpeg.org/MPEG/MSSG/) is used to convert PPM images to MPEG movies.

ImageMagick is used to convert exported images from GNUPLOT to PPM format. The

movies are added to the CD that comes with this thesis. All of the movies are in MPEG

format. Most of the MEPG players can play these moves. Windows media player is the

best one for playing these movies in windows operating system. The movie that shows

the wave propagation as represented in fig[5.3] is in file ”
K Ä ��� ��`�¯K©"áK��áKr | ���ýÂ ” and the

movie that shows the wave propagation as represented in fig[5.4] is in file ”
K Ä ��� ��`�¯ � / | ���ýÂ ”.

5.3 The speed of a wave in the mesh

As explained in sec 4.3.3 on page 52, When the sampling rate2 is near 4 sample per cycle,

the wave speeds in the axial and the diagonal directions aren’t the same. This phenomena is

illustrated in fig[5.5]. The sampling rate for the experiment in fig[5.5] is 5 samples per cycle3.

When the sampling rate is much higher than 4 sample per cycle, the wave propagates in the

diagonal and the axial directions with the same speed. This speed is B� 
 , where 	 is the speed

of wave in the real medium. For example if the transmitter is at point
T ��� � ��� W and the receiver

is at point
T ��� � � � W then it takes ��� � � � � ��� or about �"!���� for the wave to reach the to

receiver from the transmitter. In fig[5.6], the wave propagation shape is shown for the case of

20 samples per cycle.

In fig[5.7], the received signal at the receiver is shown. Despite the fact that the distance be-

tween transmitter and receiver is ������' the signal is received at the receiver at time ��� � �����
2The terms ”sampling rate” and ”sample per cycle” will be used interchangeably.
3The related MPEG for this series is shown in °²±%³F´�E
µ�¶"·¸±�û*¹»º�¼¥½�¾¸º�¿L½»E
½�À»Á ³F´�Â and°²±"³D´�E
µ�¶"·¸±�ûÃ¹�º�¼¥½�¾Äº�Å»ÆJÁ ³F´�Â on the CD accompany the thesis.
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Figure 5.4: wave propagation in a medium by plotting data in 3 dimensions ( Time difference
between each two picturess is 5 ��� ).

89



Experiments with TLM

Figure 5.5: When the sampling rate is near 4 sample per cycle, wave propagation isn’t the
same in different directions. The sampling rate here is 5 sample per cycle.( Time
difference between each two pictures is 5 ��� ). The setup for this experiment
are as follow:Medium size: ����� � ����� Source Position:(50,50) Receiver position:
(60,50)

Figure 5.6: When the sampling rate is much higher than 4 sample per cycle, waves propagate
in diagonal and axial direction with the same speed. The sampling rate here is 20
sample per cycle.( Time difference between each two pictures is 5 ��� ). The setup
for this experiment are as follow:Medium size: ����� � ����� Source Position:(50,50)
Receiver position: (60,50)
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Figure 5.7: The speed of the wave in the TLM mesh is
�� 
 	 . C is the speed of wave in the

real medium. The setup for this experiment are as follow:Medium size: ����� � �����
Source Position:(50,50) Receiver position: (60,50)

which is �"!���� . This is because the speed of the wave in the TLM mesh is B� 
 when 	 is the

speed of wave in the real medium.

5.4 Boundary effect

The TLM is a numerical model that is mostly modelled on computers. Since the amount of

RAM and CPU power of a computer is limited, it is not possible to model infinite media.

Limited media have boundaries and the medium at these boundaries should be terminated. If

this termination is not correct, the wave is reflected back from the boundary and interferes with

the original wave4. This effect shown in fig[5.8] 5.

Some ways to terminate the medium has been proposed [84], [85], [86], [87]. Most of these

models are based on Maxwell’s equations. The author has developed a new digital filter (See

section 4.3.5 on page 62) model of the TLM to help find a new way for terminating the TLM

4This is similar to a wire that should be terminated with matching impedance otherwise the wave in it will be
reflected back.

5The related MPEG for this series shown in ÇL½�È µ�ÆÉ±"À�ÊËº»·Ä¹�ÌJEÍ¹�¿�û*µ>µ�¶Ëº�¿L½»E
½�À»Á ³F´�Â andÇ�½»ÈKµÎÆÉ±%À�ÊËº»·Ä¹�ÌJEÍ¹�¿;ûÏµ>µ�¶Ëº�Å»ÆJÁ ³F´�Â .
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Figure 5.8: Wave reflection from the boundary.( Time difference between each two pictures
is 10 ��� ).The setup for this experiment are as follow: Medium size: � ��� � � ���
Source Position:(150,100) Receiver position:(160,100).

boundary. As shown in fig[5.9] the terminating medium can be modelled as a Multi-input

Multi-output IIR filter.

The output of the filter at each node is related to the inputs at all nodes at different times. This

fact is written in the following equation:

H � � ¤J� ¥ � ,�Ä � � � w �� ¤J� ¥ � B p � � � w �� ¤J� ¥ � ��� B © � � � w �� ¤J� ¥ w ��� B |I|I|B Ä 
 � � w 
� ¤J� ¥ � B p 
 � � w 
� ¤J� ¥ � ��� B © 
 � � w 
� ¤J� ¥ w ��� B |I|I|B Ä M � � w M� ¤J� ¥ � B p M � � w M� ¤J� ¥ � ��� B © M � � w M� ¤J� ¥ w ��� B |I|I| (5.1)

Where H � � ¤J� ¥ � is the output from the node at the point
T� ¡� t W

at time � and
� � w D� ¤J� ¥ � is the input to

the node at pint
T� �� t W

at time ��( n
,
n�Ð � . Ä D , p D and © D are real or complex6 weights.

By reviewing the filter model of the TLM we will eventually find that:

6For a homogenous medium the weights are real, and for a non-homogenous medium they are complex.
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Figure 5.9: To correctly terminating a medium we can terminate it to a matching Multi-input
Multi-output IIR filter
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Ä � l p � l © � |I|I|
(5.2)Ä 
 l p 
 l © 
 |I|I|Ä M l p M l © M |I|I||I|I|

and:

Ä � l Ä 
 l Ä M |I|I|
(5.3)p � l p 
 l p M |I|I|© � l © 
 l © M |I|I||I|I|

Based on these equations, the first approximation for the IIR filter is when we assume that all

coefficients other than Ä � are zero. In this case the IIR filter reduce to a very simple FIR filter

with the transfer function of:

H � � ¤J� ¥ � ,�Ä � � � w �� ¤J� ¥ � (5.4)

The value of Ä � , � | % can be found by inspecting the digital filter model and its transfer

function. The result of using this method of removing boundary effect is shown in fig[5.10] 7.

A better filter could be built by approximating the equation 5.1 as shown in the following

7The MPEGS for these experiments can be found in: ÇL½�È µ�ÆÉ±%À»ÊËº�·Ä¹�³:½�Â%¹ÉÑ�º�¿�½�E
½�À»Á ³D´JÂ andÇL½�È µ�ÆÉ±%À»ÊËº»·¸¹�³Ò½»Â%¹ÓÑ�º»Å»ÆJÁ ³D´JÂ
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Figure 5.10: Using the filter approximation as shown in equation 5.4 for removing reflection
from boundary. ( Time difference between each two pictures is 10 ��� ). The
setup for this experiment are as follow: Medium size: � ��� � � ��� Source Posi-
tion:(150,100) Receiver position:(160,100).

equation:

H � � ¤J� ¥ � ,²Ä � � � w �� ¤J� ¥ � B p � � � w �� ¤J� ¥ � ��� B © � � � w �� ¤J� ¥ w ��� B Ä 
 � � w 
� ¤J� ¥ � (5.5)

By assuming that8:� � w �� ¤J� ¥ ��Ô � � w �� ¤J� ¥ � ���� � w �� ¤J� ¥ � Ô � � w �� ¤J� ¥ w ���� � w �� ¤J� ¥ � Ô � � w 
� ¤J� ¥ � (5.6)

and finding:

Ä � ,�� | %p � ,�� | ��%© � ,�� | ��%Ä 
 , (E� | $ %
8This approximations could help to save memory when implementing TLM
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Figure 5.11: Using the filter approximation as shown in equation 5.7 for removing reflection
from boundary. ( Time difference between each two pictures is 10 ��� ). The
setup for this experiment are as follow: Medium size: � ��� � � ��� Source Posi-
tion:(150,100) Receiver position:(160,100).

the filter approximation reduced to:

H � � ¤J� ¥ � ,�� | ��% � � � w �� ¤J� ¥ � (5.7)

The result of using this method of removing the boundary effect is shown in fig[5.11] 9 .

For comparison of these method, fig[5.12] is drawn. From this fig, it is clear that the filter ap-

proximation is working and is reducing the energy in the reflected signal. A better result could

be obtained by doing a better approximation. This approximation was considered sufficiently

good for the work reported in this thesis.

5.5 Wave interference

When two waves travel in a medium they interfere with each other [44], [88]. As the result of

this interference, node and anti-nodes are created (destructive and constructive interference).

Nodes are created at places where these two waves subtract from each other. If these two waves

9The MPEGS for these experiments can be found in: Ç�½»È µ�ÆÉ±%À�Ê�º�·Ä¹�³:½�Â%¹���º�¿�½�EÕ½»À�Á ³D´JÂ andÇL½�È µ�ÆÉ±%À»ÊËº»·¸¹�³Ò½»Â%¹��»º»Å»ÆJÁ ³D´JÂ
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Figure 5.12: Here all signals are shown in one graph. The signal between �"!���� and ���"!����
is the original signal that comes directly from the transmitter. The reflected signal
from the boundary arrives at the receiver at time �#��$ ��� . The setup for this exper-
iment are as follow: Medium size: � ��� � � ��� Source Position:(150,100) Receiver
position:(160,100).
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Figure 5.13: When there are two waves in a medium, they interfere with each other. In this
modelling example, the frequency and amplitude of the two wave are the same.
Time difference between each two pictures is ������� . The setup for this experi-
ment are as follow: Medium size: ����� � ����� Source 1 Position:(30,1) Source 2
Position:(70,1).

have the same amplitude then there isn’t any energy at the nodes. Anti-nodes are created at

places where these two waves are added to each other. The position of nodes and anti-nodes

can be calculated by measuring the distance between the point in and the the two source. If the

distance is such that the two waves reach the point in phase then that point is a anti-node. If

the distance is such that the wave is reaching to the point with 180 degree difference in phase

than the point is a node point. This phenomena has been modelled by TLM and is shown in

fig[5.13] 10.

5.6 Waves and objects

When there is an object in the medium, it will change the way that wave propagates its vicinity.

If the size of object is much bigger than the wave length then reflection takes place. In reflection

the wave reflects back from the object and hence we have a new wave in front of the object and

a shadow behind the object.

10The related MPEG for this series shown in Ö×±%Â%¹�Ø�µ�û*¹�À�ÌJ¹�À�¹5µ�¿5¹�º�¿L½»E
½»À�Á ³F´JÂ andÖ×±%Â%¹�Ø�µ�û*¹�ÀÓÌJ¹�À»¹Jµ�¿L¹»º�Å»ÆJÁ ³F´�Â .
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Figure 5.14: The received signals at receivers when there isn’t any object in the medium.

If the object size as seen by the wave is much smaller than the wave length, then there is

scattering. In scattering, objects act as point sources and transmits waves in the medium. In

scattering, there isn’t any shadow at the back of the object but there is a new wave in the medium

which has been made by the object acting as a point source.

For experiments in this section of the thesis a medium with the size of (100,200) is used. There

are 196 point sources to create a plain wave and several receivers at the points (5,100), (15,100),

(25,100), (35,100), (65,100), (75,100), (85,100), (95,100). The received signal at these points

is shown in fig[ 5.14] when there isn’t any object in the medium. These signals should be used

as references for comparing with the result when there is an object in the medium. The wave

length of the signal is ������' and the duration is ������� . Thus there is one period of the signal in

the medium (see fig [5.14] for the received signal at point (5,100) which is very similar to the

generated signal).
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5.6.1 Modelling wave reflection

When waves propagate in a medium, containing an object whose size is much bigger than the

wave length of signal in the medium then reflection takes place. In this case the waves are

reflected back by the object and there is a shadow behind the object. TLM is used to model

wave reflection here and the result is shown in fig[5.15]11 .

The signals at the receivers are shown in fig[5.16]. Since the signals at the receivers located

behind the object are very weak, this experiment shows that there is a shadow behind the object

(compare with the received signals shown in fig[5.14]).

To show the reflected signal, the signal at the receiver at point (15,100) is draw against the

received signal from the same receiver when there is not an object in the medium (fig[5.17]).

The received signals at this point in these two experiments are the same except for the reflected

signal.

5.6.2 Modelling wave scattering

When a wave propagates in a medium, if there is an object whose size is smaller than the

wave length of signal in the medium then scattering takes place. In this case the incident wave

is scattered back by the object and the object act as a point source. The actual wave shape

depends on the object shape and its size relative to the wave length. In this modelling the object

is assumed to be very small compared with the wave length and hence the object acts as a point

source and will generate waves in all directions. The results shown in fig[5.18] 12.

The signals at the receivers shown in fig[5.19].

To show the scattered signal from the object, the received signal at point (25,100) is drawn

for two case: when there isn’t any object in the medium and when there is a small object in

the medium. As seen from fig[5.20], there is a small signal around time ��������� . This is the

scattered signal from the object.

11The related MPEG for this series shown in Ö×±%Â%¹�ÙÄÇ*ÚÓ¹�¿;ûtº�·Ä¹�ÌJEÍ¹�¿;ûÏµÛ½LµÜº�¿�½�E
½�À»Á ³D´JÂ andÖ×±%Â%¹�ÙÄÇÃÚÓ¹�¿;ûÃº»·Ä¹�ÌJEÍ¹�¿;ûÏµ�½}µÜº»Å�ÆJÁ ³F´JÂ .
12The related MPEG for this series shown in Ö×±%Â%¹�ÙÄÇ*ÚÓ¹�¿;ûtº»°²¿L±�û�û*¹�À�µ>µ�¶Ëº�¿L½»E
½�À»Á ³F´�Â andÖ×±%Â%¹�ÙÄÇÃÚÓ¹�¿;ûÃº�°²¿L±�û�û*¹�À»µ>µ�¶Ëº»Å�ÆJÁ ³D´JÂ .
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Figure 5.15: When the size of an object in the medium is bigger than the wavelength, the wave
is reflected by the object. There is a shadow at the back of the object and a
reflected wave in front of the object. Time difference between each two pictures is%���� . The object is an rectangular object from (40,70) to (60, 130). The object
size as seem by the wave is & ����� .
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Figure 5.16: The signals at the receivers when the size of the object is bigger than the wave
length. Since There is a shadow at the back of the object, the signals at the
receivers behind the object are very weak. The object is an rectangular object
from (40,70) to (60, 130). The object size as seem by the wave is & �����
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Figure 5.17: The received signals at point (15,100). The object is an rectangular object from
(40,70) to (60, 130). The object size as seem by the wave is & �����

5.6.3 Mixed signal and objects

If there are two or more signals in the medium and one or more object, then there are some

interesting effects. Since each signal may react differently with the object, some kind of filtering

may occur. The following subsections demonstrate this behaviour.

5.6.3.1 Two added signal

In this experiment the generated wave is the summation of two signals. One signal is high

frequency and the other is low frequency. There is an object in the medium. The size of this

object is selected in such a way that it is scattering one of the signals and reflecting the other

one. The generated signal is shown in fig[5.21].

The wave length of the high frequency signal is ������' and the wave length of the low frequency

signal is ��������' . The object is a rectangular object from (40,80) to (60,120). The medium size

is � ��� � � ��� . The received signal at point (65,100) is shown in fig[5.22].

As can be seen from fig[5.22], for a receiver placed behind the object, the object filters out the
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Figure 5.18: When the size of an object in the medium is smaller than the wavelength, waves
are scattered by the object. If the object size is very small compared to the wave
length then the object acts as a point source and will generate waves in all direc-
tions. The time difference between each two pictures is %���� . The object is an
rectangular object from (40,99) to (60, 101). The object size as seem by the wave
is ����'
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Figure 5.19: The signals at receivers when the object in the medium is small compared with
the wave length. Since there isn’t any shadow, the received signals on all of the
objects are strong (Compared with the reflection case). It should be noted that
since the scattered signal from the object is very weak, it can’t be seen in this
figure. The object is an rectangular object from (40,99) to (60, 101). The object
size as seem by the wave is ����'
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Figure 5.20: The received signals at point (25,100) when there is an object in the medium and
when there isn’t any object in the medium. The object is an rectangular object
from (40,99) to (60, 101). The object size as seem by the wave is ����'
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Figure 5.21: The source signal for added signal experiment .
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Figure 5.22: The received signal at point (65,100) when the two signal added to each other.

high frequency signal as it acts as a reflector for this signal13 . The wave propagation shape is

shown in fig[5.23] 14..

5.6.3.2 Amplitude modulation signals

In this experiment a wave is generated that is amplitude modulation [89] of two signals. One

signal is high frequency (The modulated signal) and the other is low frequency (The modulating

signal). There is an object in the medium. The size of this object is selected in such a way that it

scatters one of the signals and reflects the other one. The generated signal is shown in fig[5.24].

The wave length of the high frequency signal is ������' and the wave length of the low frequency

signal is ��������' . The object is a rectangular object from (40,80) to (60,120). The medium size

is � ��� � � ��� . The received signal at point (65,100) is shown in fig[5.25].

As can be seen from fig[5.25], the object doesn’t affect in any way the low frequency or high

13This is similar to the fact that when there is a load music playing, peoples in other rooms can hear only to the
low frequency section of the music.

14The related MPEG for this series shown in Ö×±%Â%¹�ÙÄÇÃÚÓ¹�¿;ûÃº»Ý�ÆÉÆ%¹�Æ"º�¿L½»E
½»À�Á ³F´JÂ .
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Figure 5.23: The wave propagation shape when the two input signals added to each other.
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Figure 5.24: The source signal for the amplitude modulation experiment .
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Figure 5.25: The received signal at point (65,100) when there is an amplitude modulated signal
in the medium.

frequency signal1516. This is because there is no low frequency signal component, only a carrier

(high frequency) and two sidebands close to the carrier. The wave propagation shape is shown

in fig[5.26] 17..

5.6.4 Curved objects

In this section an object with a curvy surface is modelled. There are two scenarios: A focusing

mirror and a circular mirror.

5.6.4.1 Focusing mirror

In this example a focusing mirror is modelled. In a focusing mirror, the plane waves will be

focused on a point which is the focal point for the mirror [40]. This modelling is shown in

15We are lucky since if the object filters or alters the signal in any way then we couldn’t have AM radios!
16The change in modulation index is the result of TLM medium that acted as a filter to different signals.
17The related MPEG for this series is shown in Ö×±%Â%¹�ÙÄÇÃÚÓ¹�¿�ûtº»Ý¸Þ×º�¿L½»E
½�À»Á ³F´JÂ .
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Figure 5.26: The wave propagation shape when the there is an amplitude modulated signal in
the medium.

fig[5.27]18..

5.6.4.2 Circular mirror

If a point source is placed in a circular mirror, then when the wave propagates from the source

it will be reflected back by the circular mirror [40]. This reflection is such that all of the waves

will be collected at another point in the medium. This phenomenon is modelled in fig[5.28] 19.

5.7 Array transducers

In this section TLM is used to model array transducers [90]. At first the setup is explained and

then the use of TLM to steer waves in the medium is shown.

5.7.0.3 Setup

The TLM medium for these experiments is a � ��� � � ��� and the time step for modelling is��% ����� . There are 20 source at points from (1,90) to (1,110). The sampling rate for the gener-

18The related MPEG for this series is shown in Ö×±%Â%¹�ÙÄÇ*ÚÓ¹�¿;ûtº�ßÄ½»¿�È�à5µ>µ�¶�á�³:µ�À�À»½�ÀÓº�¿L½»E
½�À»Á ³F´JÂ .
19The related MPEG for this series is shown in Ö×±%Â%¹�ÙÄÇ*ÚÓ¹�¿;ûtº»â¸µ�À»¿LEÍ¹�á<³:µ�À�À»½�ÀÓº�¿L½»E
½�À»Á ³F´JÂ .
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Figure 5.27: Wave propagation shape with a focusing mirror in the medium (time difference
between each two pictures is �#%���� ).

Figure 5.28: Wave propagation shape in a circular mirror (time difference between each two
pictures is � ����� ).
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Figure 5.29: Wave propagation shape for an array transducer when there isn’t any steering.
(time difference between each two pictures is ������� ).

ated signal is 2.0820, thus the new sampling rate theory is being used here.

5.7.1 Wave propagation without any steering

In this experiment no steering is used. This can be used as a reference experiment for the other

experiments where the wave is steered. The result shows in fig[5.29] 21.

5.7.2 Wave propagation with steering to the left

Here an array transducer is modelled for the case when the beam is steered to the left22. The

time difference between firing each two transducer is �#��� . With this time delay the wave will

be steered approximately !�% � . The result shows in fig[5.30]23 .

20In the chapter 6 on page 121, the use of TLM modelling with less than 4 sample per cycle is shown.
21The related MPEG for this series is shown in Ý�À�À»±%ÊÉ��À»±#µÜà5ÆÉÈJ¿5¹�À�º»ã:½�° ûÃ¹�¹�À»µ>µ�¶Ëº�¿�½�E
½�À»Á ³D´JÂ .
22Left and right directions are based on the wave propagation direction.
23The related MPEG for this series is shown in Ý�À�À»±%ÊÉ��À»±#µÜà5ÆÉÈJ¿5¹�À�º»¼¥¹»ÌzûÃ° ûÃ¹�¹�À»µ>µ�¶Ëº�¿�½�E
½�À»Á ³D´JÂ .
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Figure 5.30: Here the wave is steered to the left. The steering angle is approximately is !�% � .
(time difference between each two pictures is ������� ).

5.7.3 Wave propagation with steering to the right

Steering to the right24 is modelled by TLM in the same way that it was used to model steering

to the left. The only difference is that the time delay between firing each two adjacent node

is -1 instead of 1 that was for steering to left. With this time delay the wave will be steered

approximately ()!�% � . The result is shown in fig[5.31]25 .

5.7.4 Steering in other angles

By changing the time delay between firing each two adjacent node, and also changing the

distance between two adjacent node, it is possible to change the steering angle. For example to

steer to the left with steering angle of less than 1, one may use an array of transducer where the

distance between each two adjacent node in the array is ����' .
The other choice is to change the sampling rate, as it will change the quantization error of ��� .

To summarize, to model steering with any arbitrary angle, one can change any of the following

parameters:

24left and right directions are based on the wave propagation direction.
25The related MPEG for this series shown in Ý�À�À»±%ÊÉ��À»±#µÜà5ÆÉÈJ¿5¹�À�º»·¸µ�¶"äzûÃ° ûÃ¹�¹�À»µ>µ�¶Ëº�¿�½�E
½�À»Á ³D´JÂ .
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Figure 5.31: Steering to the right shows here. The steering angle is approximately is ()!�% � .
(time difference between each two pictures is ������� ).

1. Distance between each two adjacent nodes.

2. Time delay between firing each two adjacent nodes.

3. Sampling rate.

5.8 Doppler effects

TLM can be used to model Doppler effects [38]. In these experiments TLM modelling is used

to model the Doppler effects caused by the receiver moving toward (or away) of the transmitter.

This is the first time that TLM is used to model Doppler effects.

5.8.0.1 Setup

The medium size is % � � � ��� and the transmitter is located at (25,10). The receiver is initially

located at (25,70) and moves toward (or away) of the transmitter. The speed of the receiver

movement is normalized to the speed of wave in the medium so that a speed of
�+ means that

the speed of the receiver in the medium is B + when 	 is the speed of wave in the medium. The

direction of movement is the direction from the receiver to the source, so a positive speed shows

that the receiver is moving toward the source and a negative number for speed shows that the
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Transmitter Receiver

Figure 5.32: The setup for modelling the Doppler effect.

receiver is moving away from the source. The setup is shown in fig[5.32]. The sampling rate is

20 sample per cycle unless otherwise stated.

5.8.0.2 Speed , �+
In these experiments , the receiver moves toward (or away) from the source and the speed of

receiver is
�+ . The received signal is shown in fig[5.33]. There are three signals in this fig26:

Speed ,�� : The receiver doesn’t move. This signal is added to this figure to have a reference

that the other signals can be compared with.

Speed , �+ : Here the receiver is moving toward the source with the speed of
�+ . In this case

the frequency of the received signal is increased.

Speed , ( �+ : Here the receiver is moving away from the source with the speed of
�+ . The

received signal frequency is less than the original transmitted signal.

As can be seen from the fig[5.33], since the movement of the receiver is a discretised, noise

accompanies the signal. This noise is smaller when the speed is lower or the sampling rate is

higher. The effect of this noise can be seen clearly in the frequency domain representation of

the signals. To find the frequency domain representation of the signals, an FFT was used. The

result is shown in fig[5.34]27 .

As seen from this figure, discretising the movement generates some noise at high frequency. To

reduce this noise, we can reduce the speed or increase the sampling rate.

26The amplitude for the case when the speed is ¶å is higher than the case when the speed is á ¶å since in the first
case the receiver moves toward source and hence it’s amplitude is increasing but in the second case the receiver
moves far from source and the amplitude in decreasing

27A 64 sample FFT is used and the samples were collected the steady state section of the signals ( from sample
180 to sample 244). The figure shows signal magnitude. The phase is not show here.
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Figure 5.33: The received signals in the time domain when the speed is * �+ .
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Figure 5.34: The received signals in frequency domain when the speed is * �+ .
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Figure 5.35: The received signal in time domain when the speed is * ���� .

5.8.1 Speed
����

To show how the speed effects the descretising noise, the experiments were repeated with a

receiver speed of
���� . The results are shown in fig[5.35] and fig[5.36]. As can be seen, the

noise level is less here compared with when the speed is
�+ . In fig[5.37] the signals from both

experiments are drawn so that comparing them with each other become simpler.

5.8.2 Sampling rate 50

In this experiment the effect of the sampling rate on the digitising noise is shown. The sampling

rate here is 50 sample per cycle. The result is shown in fig[5.38 and fig[5.39]. As seem from

these pictures the descretising noise here is less than the previous experiments.
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Figure 5.36: The received signal in frequency domain when the speed is * ���� .
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Figure 5.37: The received signal in frequency domain when the speed is * �+ and * ���� .
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Figure 5.38: The received signal in the time domain when the speed ,Ò* �+ and the sampling
rate is 50 samples per cycle.
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Figure 5.39: The received signal in frequency domain when the speed is * �+ and the sampling
rate is 50 samples per cycle.
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Chapter 6

Sampling rate

In this chapter a new theory for sampling rate in TLM modelling will be introduced. The

original sampling rate that was presented by Johns [59] was based on wave propagation in a

transmission line. The new sampling rate is based on system theory and the filtering effect of a

TLM mesh.

6.1 Johns theory for sampling rate

In his first paper on TLM modelling for electromagnetic wave propagation [59], Johns shows

that the wave propagation in the axial direction1 is frequency dependent but the speed in the

diagonal direction2 direction is always constant and is equal to B� 
 where C is the speed of wave

in the real medium. He shows that the speed of the wave propagation in the axial direction can

be found from equation [6.1]:�J�>� ª ® F ��'� ¬ , � � �J�>� ª U ��'��	 ¬ (6.1)

where ® F is the propagation constant of the medium. ® F is related to the frequency and the

speed of the wave propagation in the TLM mesh and the speed of the wave propagation in the

real medium by the following equation:æ F	 , U® F 	 (6.2)

1Axial direction is the direction along the X or Y direction (see fig[6.3])
2Diagonal direction is direction along the diagonal of squares in the TLM mesh (see fig[6.3])
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where C is the speed of the wave propagation in the real medium and æ F is the speed of the

wave propagation in the TLM medium. The value of ® F can be found from equation 6.2:

® F , Uç�èB 	® F , Uæ F
and substituting for ® F in the equation 6.1:

�J�>� ª êç è´��'� ¬ , � � �L�>� ª U ��'��	 ¬�J�>� ª U ��'� æ F ¬ , � � �L�>� ª U ��'��	 ¬
Since

U , 
5é BA :

�J�>�ëê 
5é BA ��'� æ Fdì , � � �J�>�ëê 
5é BA ��'��	 ì�J�>� ª ��	«��'æ F � ¬ , � � �J�>� ª �ä��'� ¬ (6.3)

The normalized value for the wave propagation speed and the sampling rate3 may be defined

as:

� , ç�èB Normalized speed� , Aì è Sampling rate

By substituting the above values in equation 6.2:

�J�>�îí �� �7ï , � � �J�>�îí ��:ï (6.4)

3In the original Johns work, he uses îÜðñ , which is the inverse of sampling rate. Using sampling rate here make it
simpler to understand the result.
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Figure 6.1: Relationship between sampling rate and the wave propagation speed in a TLM
mesh.

Fig[6.1] shows the speed of wave for different sampling rates. It can be seen from fig[6.1] that

when the sampling rate is very high, the speed of the wave propagation in the TLM medium

is B� 
 , where C is the speed of the wave propagation in the real medium. As the sampling

rate is reduced 4 then the speed of the wave propagation is reduced. Fig[6.2] shows the wave

propagation speed for sampling rates near 4 samples per cycle. As can be seen from fig[6.1]

and fig[6.2], the speed of the wave propagation is reduced when the sampling rate is reduced

to 4 samples per cycle. Unfortunately this method can’t show us what is happening when the

sampling rate is less than 4 samples per cycle5.

6.1.1 Examining wave speed for different sampling rates

This section, shows how the sampling rate will affect the wave propagation speed.

4This is equal to increasing the frequency of the signal when the sampling rate is constant.
5From the sampling theory it is clear that one can samples a signal with 2 sample per.
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Figure 6.2: A closer look at the relationship between the sampling rate and the wave propaga-
tion speed near 4 samples per cycle.

6.1.1.1 TLM mesh setup

Fig[6.3] shows the setup for examining the wave propagation speed in the TLM mesh. The

TLM medium size is a ����� � ����� . There is a source at (50,50) and there are two receiver at

points (64,50),(60,60). It should be noted that each of these two receivers is approximately the

same distance from the source. The receiver at (64,50) is on an axial line from the source and

the receiver at (60,60) is on a diagonal line from the source. For simplicity these receivers will

be called the axial receiver and the diagonal receiver respectively.

6.1.1.2 Case 1: Sampling rate is 20 samples per cycle

In this experiment, a sinusoidal signal with 20 samples per cycle is injected at the source and

the resulting signals at the receivers are recorded. These signals are shown in fig[6.4]. As can

be seem from this fig, the wave shape and delay for the received signal at these two receivers

are the same. It shows that the speeds of waves propagation in these two directions are approxi-

mately the same. The classical circular wave propagation pattern is observed indicating correct

modelling of the real world. The wave propagation shape is drawn in fig[6.5]
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Figure 6.3: The setup for examining the wave propagation speed in the TLM medium.
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Figure 6.4: Received signal at axial and diagonal receiver when the sampling rate is 20 sample
per cycle.
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Figure 6.5: Wave propagation shape when the sampling rate is 20 samples per cycle (time
difference between each two pic is %���� ).

6.1.1.3 Case 2: Sampling rate is 5 samples per cycle

In this experiment, a sinusoidal signal with 5 samples per cycle is injected at the source and

the resulting signals at the receivers are recorded. These signal is shown in fig[6.6]. As can be

seem from this fig, the wave shapes and delays for the received signals at these two receivers are

completely different. It can be easy seen that the wave propagation speed in these two direction

(axial and diagonal directions) are not the same. The wave propagation shape is shown in

fig[6.7]. This wave propagation modelling is not correct as the wave fronts are not circular and

more power is propagated along the diagonal directions than the axial directions.

6.2 Systematic approach to TLM modelling

If we place a source and a receiver in the medium, and assuming the source as input and the

receiver as output, we can model TLM as a linear system6. When TLM mesh is modelled as a

linear system then it is possible to find a transfer function for it [91] [92]. This transfer function

depends on the relative positions of the the source and the receiver. As the distance between

the source and the receiver increases, there is more attenuation and hence the magnitude of the

6A TLM system should be linear since all of its sub systems are linear.
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Figure 6.6: Received signal at axial and diagonal receiver when the sampling rate is 5 sample
per cycle.

Figure 6.7: Wave propagation shape when the sampling rate is 5 samples per cycle (time dif-
ference between each two pic is %���� ).
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Figure 6.8: The impulse function used to find the transfer function of the TLM mesh.

transfer function decreases.

6.2.1 Impulse response of the TLM mesh

As the transfer function7 of a TLM medium is very complex8, we can’t find it mathematically.

One way to find the transfer function experimentally is to inject an impulse signal to the source

and find the received signal. The mathematical definition of an impulse signal is shown in

equation 6.5 and its graphical representation is shown in fig[6.8]9

Ñ s � u ,
YZ[ Z\ � n=0

�� otherwise
| (6.5)

It should be noted that an impulse signal has a flat power spectrum [94]. One may feel that

injecting an impulse signal to the TLM mesh isn’t a good idea for calculating transfer func-

tion since the TLM is valid only for low frequencies and an impulse signal contain all of the

7Since the transfer function is the fourier transform of the impulse response, we use them interchangeably here.
8It is a function of source and receiver coordinates.
9Since a TLM modelling is a digital model, this is the digital version of impulse signal[93].
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Figure 6.9: Impulse response when the source is at (50,50) and the receiver is at (55,65).

frequencies and most importantly high freqencies10 . The answer is that:

Since the TLM is a linear system, it is always possible to find a transfer function for it. By

definition, the transfer function is the system response to the impulse signal. It means that one

is always able to find a transfer function for a linear system by injecting an impulse signal to

the input of the system and saving the output11 . In fig[6.9] a sample transfer function is shown.

The system input is the source at point (50,50) and system output is the receiver is at point

(55,65). The general form of this impulse response will be explained later in the thesis.

6.2.2 Transfer function for the TLM mesh

In the previous section it was explained how one can find the impulse response. In this section

it will be explained how to find the transfer function. The best way to find a frequency domain

transfer function in is to find the fourier transform [96] of the time domain impulse response.

10Corresponding to sampling rate of less or equal 4 sample per cycle.
11It should be noted that when the system is a continues system, creating an impulse signal is impossible since its

value for t=0 is ò . In digital systems it is always possible to create an impulse signal and find the transfer function
with it [95].

129



Sampling rate

Since the TLM modelling is a digital one, we can use discrete fourier transform (DFT)12. By

finding the DFT of a time domain impulse response one can find the frequency domain transfer

function. The DFT of the sample time domain impulse response that was found in the last

section is shown in fig[6.10]. The result of the DFT is a sampled version of the discrete time

fourier transform. Each of these samples called a bin number and the distance between each

two bin number called bin width. The relationship between sample interval (time difference

between each two adjacent sample in the time domain) and bin width (frequency difference

between each two adjacent bin in the DFT output) will be shown in the next section.

6.2.2.1 Sampling interval in the time domain and bin width in frequency domain

The sampling rate in time domain dictates the maximum frequency that one can detect by the

DFT in the frequency domain [97]. This is a direct result of sampling theory13. If the sample

interval in the time domain is ��� , then the maximum frequency in DFT can be calculated by

equation 6.6.� Ä   £ , ������ (6.6)

In the same way, the bin width in the DTF output is related to the maximum observation time

for the signal in time domain (see equation 6.7).

� £ , �� Ä   � (6.7)

Example: if a signal sampled with ��� of 1ms ( ��� M samples per sec) and there was 128 samples

of the signal. The maximum frequency that can be detected in the DFT output can be calculated

12DFT is the standard way for finding the fourier transfer of a digital signal. The best way to find it is FFT ( Fast
Fourier Transfer). There isn’t any difference on how to find the fourier transform, the result should always be the
same. In my work I use FFT as it is fast but I explain my work here by using DFT as it is standard way and comes
directly from the definition. more information can be found in references.

13Sampling theory says that for error free reconstruction of a signal, one should sample it at least by two samples
per cycle for its largest frequency.
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Figure 6.10: Transfer function when the source is at (50,50) and the receiver is at (55,65).
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by using equation 6.6:

� Ä   £ , ������� Ä   £ , �� � ��� w M� Ä   £ , ��������� Ä   £ , % ��� O �
The bin width ( � £ ) can be calculated in the same way by using equation 6.7. The

� Ä   � here

is ��� w M � �#��°_, � | ��° � ��� w �
� £ , �� Ä   �� £ , �� | ��° � ��� w �� £ , ���� | ��°� £ , $ | °ð�#��% O �

So the DFT output is 128 bin from -500 Hz to 500 Hz, the bin width is 7.8125.

As it can be seen from the above example, the interpretation of the DFT output is related

to sampling rate of the input signal. It is possible to present the DFT output by using the

normalized sampling rate. It is clear that the
� Ä   £ in the DFT output represent signal with 2

samples per cycle. The
� Ä   £ is bin number N/2 when N is the number of samples in signal.

For an arbitrary bin number n, the normalized sampling rate can be found by equation 6.8.

� F , �0 � 0 (6.8)

where � F is the sampling rate for bin number n. For example the relationship between bin

numbers on a 128 point DFT and normalized sampling rate is shows in table 6.114. It is possible

to change the bin numbers in fig[6.10] to sample per cycle by using this table. The result shown

in fig[6.11].

14Only positive frequencies are shown here
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Bin Sampling Per Cycle Bin Sampling Per Cycle Bin Sampling Per Cycle
0 ó 1 128.000000 2 64.000000
3 42.666667 4 32.000000 5 25.600000
6 21.333333 7 18.285714 8 16.000000
9 14.222222 10 12.800000 11 11.636364
12 10.666667 13 9.846154 14 9.142857
15 8.533333 16 8.000000 17 7.529412
18 7.111111 19 6.736842 20 6.400000
21 6.095238 22 5.818182 23 5.565217
24 5.333333 25 5.120000 26 4.923077
27 4.740741 28 4.571429 29 4.413793
30 4.266667 31 4.129032 32 4.000000
33 3.878788 34 3.764706 35 3.657143
36 3.555556 37 3.459459 38 3.368421
39 3.282051 40 3.200000 41 3.121951
42 3.047619 43 2.976744 44 2.909091
45 2.844444 46 2.782609 47 2.723404
48 2.666667 49 2.612245 50 2.560000
51 2.509804 52 2.461538 53 2.415094
54 2.370370 55 2.327273 56 2.285714
57 2.245614 58 2.206897 59 2.169492
60 2.133333 61 2.098361 62 2.064516
63 2.031746 64 2.000000

Table 6.1: Conversion between bin number in a DFT and sampling rate for a DFT with 128
samples.
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Figure 6.11: Transfer function when the source is at (50,50) and the receiver is at (55,65). Note
that the X axis converted to samples per cycle.
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Source

Diagonal Receiver

Axial Receiver

Axial Direction

Diagonal Direction

Figure 6.12: The setup for finding a new criteria for sampling rate

6.3 New criteria for sampling rate based on system theory

For TLM to be a good model for wave propagation, its transfer function should only depend on

the distance between source and receiver and not to the source and receiver positions. This fact

can be used to established a new sampling rate theory for TLM modelling.

6.3.1 TLM mesh setup

The experiments in this section is based on a setup that is shown in fig[6.12]. TLM medium

size is ����� � ����� . The source is at the point ( 50,50). There are two receivers at points (60,60)

and (64,50). The first receiver (at the point (60,60)) is in a diagonal line with the source and

the second one ( at the point (64,50)) is in a axial line with the source. These two receivers will

called as the diagonal receiver and the axial receiver respectively . It should be noted that the

distance between each of these two receivers and the source are approximately equal.
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Figure 6.13: The received signal at the axial receiver.

6.3.2 Processing

An impulse signal was injected to the source and the resulting signals at the receivers were

recorded. The received signals are shown in fig[6.13] and fig[6.14]. These impulse response

were transformed into frequency and plotted using sample per cycle for X axis.The results are

shown in fig[6.15] and fig[6.16]. From fig[6.15] and fig[6.16], it is clear that these two transfer

functions are not the same especially around 4 samples per cycle. At 4 samples per cycle the

two transfer function are completely different but at 2 samples per cycle and ó samples per

cycle (DC signal) they become equal. However, the values of the transfer functions at these two

points are zero which means that the received signal have no frequency components at DC or

at a frequency corresponding to 2 samples per cycle. This explains the oscillatory nature of the

impulse response shown in fig[6.13] and fig[6.14].

6.3.3 Results

In fig[6.17] and fig[6.18], The transfer functions for the cases where the receivers are at point

(60,60) (the diagonal receiver) and at point (64,50) (the axial receiver) are shown on the same
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Figure 6.14: The received signal at the diagonal receiver.

graph. By studying fig[6.17] and fig[6.18] the following results can be found:

The system response when the sampling rate is 2 samples per cycle: The system response

for 2 samples per cycle is 0.

The system response to DC signal: The TLM response to a DC signal is 0. The DC signal

corresponds to sampling rate of ó samples per cycle.

Response to 4 samples per cycle: The transfer functions for 4 samples per cycle are very dif-

ferent.

Sampling rate is higher than 4 samples per cycle: As the sampling rate is increased, the two

transfer functions become more similar to each other. This means that for sampling

rates much higher than 4 samples per cycle, the TLM mesh is a good model for wave

propagation. This result was shown by Johns method too.

Sampling rate is near 2 samples per cycle: When the sampling rate is near 2 samples per cy-

cle, the response of two transfer functions converge to become essentially the same. This

mean that we can use TLM modelling with sampling rate approaching 2 samples per

cycle .
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Figure 6.15: Frequency domain transfer function when the source is at (50,50) and the receiver
is at (50,64). Note that the X axis converted to samples per cycle.
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Figure 6.16: frequency domain transfer function when the source is at (50,50) and the receiver
is at (60,605). Note that the X axis converted to samples per cycle.
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6.4 New sampling theory

Based on the experiments in the last section, The following sampling theory for TLM mesh can

be stated:

As a digital system, TLM modelling obeys all of the digital signal and system
theory. This means that it can work with any signal as long as the sampling rate of
the signal obeys sampling rate theory. Based on sampling rate theory, any signal
can be regenerated from its samples when the sampling rate is higher than 2 sample
per cycle for its higher frequency component.

The TLM mesh behaves as a 2 dimension 15 digital filter. This digital filter has
different transfer function which depend on where the receiver is located relative
to the source position.

For TLM to be a good model for wave propagation, all of the transfer functions
that one can generate by placing receivers at different places should be the same.
The transfer functions for these systems 16 are equal only when ��� and hence��' 17 the size of the mesh in the TLM, is selected so that one of the following
criteria is met:

1. Sampling rate is much higher than 4 samples per cycle

2. Sampling rate is less than 4 sample per cycle and near 2 samples per cycle
(One should remember that the TLM response to the system with 2 samples
per cycle is 0).

6.4.1 Equal error sampling rates

As can be seem from fig[6.17], for each sampling rate which is higher than 4 samples per cycle,

there is a corresponding sampling rate below 4 samples per cycle that has the same amount

of error. These two sampling rate would be called ”Equal error sampling rates”. To find the

relation between these two sampling rates, it should be noted that these two sampling rates are

symmetrically placed on the frequency axis with respect to the 4 samples per cycle point. If the

frequency related to 4 samples per cycle will be called as
� � and the frequencies that related to

these two sampling rates will be called as
� ×

and
��P 18, we have:� P ( � � , � � ( � ×

(6.9)

152 dimension TLM modelling is supposed here. This theory can be extended to 3 dimension simply.
16When the receiver places at different points in the mesh.
17remember that âõô:��� ü���ö when C is the speed of wave in the real medium.
18 Ì�÷ is the high frequency with low sampling rate which is near 2 sample per cycle and Ì ñ is low frequency with

high sampling rate ( more than 4 sample per cycle)
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For any frequency we can write :� , �� � ��� (6.10)

where S is the sampling rate of the frequency f in sample per cycle. Placing the value of

different frequencies from equation 6.10 into equation 6.9,and noting that the sampling rate for� � is 4 samples per cycle, we have:

�� P � ��� ( �! � ��� , �! � ��� ( �� × � ����� P ( �! , �! ( �� ×!«(ø� P! � � P , � × (Ö!! � � ×!Ü� × T !«(ø� P W , !Ü� P T � × ( ! W� × T !«(ø� P W , � P T � × (Ö! W!Ü� × (ø� P � × , � P � × (Ö!Ü� P!Ü� × , ��� P � × (Ö!Ü� P��� × , � P � × (÷��� P��� × , � P T � × (÷� W (6.11)

Solving equation 6.11 to find � P , equation 6.12 could be found.

� P , ��� ×� × (�� (6.12)

In the same one can find:

� × , ��� P� P (�� (6.13)

With this equation (6.13) one can calculate the sampling rate near 2 samples per cycle which

generates the same amount of error as from the equal error sample rate above 4 samples per

cycle. For example, one can use a TLM for modelling wave propagation for a signal with 2.08
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sample per cycle instead of 50 samples per cycle, since19:

� × , ��� P� P (÷�� × , � � % �% �¸(��� × , �����!�°� × , � | ��° ����� (6.14)

6.5 Testing the new sampling rate theory

To test the new sampling rate theory, sample modelling in sec 6.1.1 was repeated with the

appropriate sampling rate less than 4 samples per cycle.

6.5.1 Case1: Sampling rate of 3.333 sample per cycle

The Sampling rate 3.333 has the same amount of error as the sampling rate of 5 samples per

cycle. In fig[6.19] the received signals at diagonal and axial receivers are shown. The corre-

sponding wave propagation shape is shown in fig[6.20]

6.5.2 Case 2: Sampling rate is 2.222 sample per cycle

The Sampling rate 2.222 has the same amount of error as the sampling rate of 20 samples per

cycle. In fig[6.21] the received signal at diagonal and axial receivers is shown. The correspond-

ing wave propagation shapes is shown in fig[6.22]

6.6 Using new sampling rate for modelling wide band waves

If the injected signal to the TLM is not single tone signal, then making sure that the sampling

rate for all frequency in the signal is near 2 samples per cycle is difficult and sometimes impos-

sible. There are three important case:

19Since the subscript can be interchanged in equation 6.12 and 6.13 to go either one of these equations to the
other one, then it doesn’t matter one regards °Üù as the sampling rate per cycle for higher frequency or as denoting
a high sampling rate. Since the later definition is clearer it will be used here.
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Figure 6.19: Sampling rate is 3.333.

Figure 6.20: Wave propagation shape when the sampling rate is 3.333.
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Figure 6.21: Sampling rate is 2.222.

Figure 6.22: Wave propagation shape when the sampling rate is 2.222.
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1. Signal band is than one tenth of the minimum frequency in the signal.

In this case TLM can be used with low sample rate.

2. Signal band is between one tenth of the minimum frequency and 1000 times of the mini-

mum frequency.

In this case the best way to use TLM modelling is to break the signal to some smaller

bands and model each band in a different TLM mesh with low sampling rate. The result

would be the sum of these modelling processes 20. In this case, there is some reduction in

the processing that would be done since for example if the signal be modelled by using

50 samples per cycle, instead of 2.08 samples per cycle, there are
T +5�
�ú � § W M Ô � � °�mð� times

more calculations compared to when it is modelled by 2.08 samples per cycle. But if it is

break down to 10000 different TLM modelling21 , the saving in breaking down different

TLM meshes are
� M § © ����5�5�5� Ô � | ! times less computation.

3. Signal band is more than 1000 times of the minimum frequency.

The best way to model such signals is to use higher sampling rate and one TLM mesh.

6.6.1 Using new sampling rate for modelling ultrasound wave propagation in

medical systems

Since most of the applications of ultrasound in medical systems falls to the second category in

the previous section then the best way to model the ultrasound wave propagation in medical

systems is to break the signal to some narrow band signals and model each of them with a

different TLM and add the result to each other.

6.6.2 Using new sampling rate for modelling wave propagation in nonlinear medium

Since breaking the signal to some narrow band signals and doing different modelling and adding

the results to each other is only acceptable for linear systems, for nonlinear systems, if the signal

band width is larger than 0.1 of minimum frequency in the signal, the only way that one can

model them is to use high frequency sampling rate.

20It is based on the superposition concept and is only acceptable for linear medium
21when the original signal band is 1000 times of the minimum frequency and it is breaks down to signals that the

signal bands are 0.1 of the minimum frequency in the signal
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6.7 Conclusion

In this chapter it was shown that it is possible to use TLM with less than 4 samples per cycle.

The Johns theory on sampling rate for TLM modelling isn’t complete and it doesn’t show the

possibility of modelling the TLM with about 2 samples per cycle. By using 2 samples per cycle

for modelling wave propagation, it is possible to model more realistic ultrasound problems with

TLM in today’s computers. The next example clearly illustrate this:

Example: We have a medium where the speed of sound is 1500 m/s (metre per second)22 . We

want to model ultrasound wave propagation in the medium. The frequency of ultrasound is

1MHz and the size of the medium is ��� � ��� � ��� cm. The modelling time23 is $ � ��� w + . The

wavelength of the signal in the medium is :

� , 	 �� , �#% ������ �� , � | % � ��� w � � (6.15)

case 1: Sampling rate of 50 samples per cycle The number of nodes (NON) in each X,Y,Z

axis should be:

��' , �% ���' , � | % � ��� w �% ���' , � � ��� w �
� H � , ���'� H � , | �� � ��� w �� H � , � | � � ��� � (6.16)

22Approximately the speed of sound in body (water) [48], [38]
23Time for wave to propagate 10 cm.
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The total number of nodes (TNON) is

� � H � , � H � M� � H � , T � | � � ��� � W M� � H � , � | %�m � $ � ��� � M (6.17)

We need 32 byte of memory for each node, then the total amount of memory that need to

model this system is:

� � � , � � � � � H �� � � , � � � � | %�m � $ � ��� � M� � � , � | �"!�m�m�°K! � ��� �û� (6.18)

The memory that is needed to model this system with 50 samples per cycle � | �"!�m�m�°K! �����ü Giga Bytes! The time steps (TS) for modelling is:

��� , ��'	��� , � � ��� w ��#% ������ , � � ��� w ©
�7� , � nû� `����7� , $ � ��� w +� � ���ð(Þm�7� , � | % � ��� � (6.19)

The processing for each node consist of 4 additions and 4 multiplications. For simplicity

we assume that the time for multiplication and addition are the same, it takes 8 instruction
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to process a node. The total precessing for a time step (TPTS) is:

�   �7� , ° � � � H ��   �7� , ° � � | %�m � $ � ��� � M�   �7� , � | °�$z!�m�& � ��� � M
(6.20)

The total processing (TP) is:

�   , �   �ý� � �ý��   , � | °�$z!�m�& � ��� � M � � | % � ��� ��   , � | ����&�� � & � ��� � ©
(6.21)

Today PCs can deliver more than 1 giga instructions per sec24. Time request (TR) to

model this system is:

�Òþ , �  ��� ©�   , � | ����&�� � & � ��� � ©��� ©�   , � | ����&�� � & � ��� ��� (6.22)

This time is around 100 year!

Case 2: Sampling rate of 2.08 sample per cycle The number of nodes (NON) in each X,Y,Z

24This number is an approximate value.
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axis should be:

��' , �� | ��°��' , � | % � ��� w �� | ��°��' , $ | � � ��� w +
� H � , ���'� H � , | �$ | � � ��� w +� H � , � | ! � ��� M (6.23)

The total number of nodes (TNON) is

� � H � , � H � M� � H � , T � | ! � ��� M W M� � H � , � | $z!�! � ��� © (6.24)

We need 32 byte of memory for each node, then the total amount of memory that needed

to model this system is:

� � � , � � � � � H �� � � , � � � � | $z!�! � ����©� � � , ° | $ ° ��° � ��� ��� (6.25)

The memory that needed to model this system with 2.08 samples per cycle is about °�$
Giga Byte. This amount of memory can be found on supercomputers today and should
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be in the Pcs with in a few years. The time steps (TS) for modelling is:

��� , ��'	��� , $ | � � ��� w +�#% ������ , ! | ° � ��� w §
�ý� , � nt� `����ý� , $ � ��� w +! | ° � ���ð(3°�ý� , � | !�% � ��� M (6.26)

The processing for each node consist of 4 additions and 4 multiplications. For simplicity

we assume that the time for multiplication and addition are the same, it takes 8 instruc-

tions to process a node. The total precessing for a time step (TPTS) is:

�   �7� , ° � � � H ��   �7� , ° � � | $z!�! � ��� ©�   �7� , � | �#m�%�� � ��� ���
(6.27)

The total processing (TP) is:

�   , �   �ý� � �ý��   , � | �#m�%�� � ��� ��� � � | !�% � ��� M�   , � | �#° � � ! � ��� � M
(6.28)

Today PCs can deliver up to ��� © instruction per sec25. Time request (TR) to model this

25This number is an approximate value.
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Sampling rate is 50 Sampling rate is 2.08
Memory � | �"!�m�m�°K! � ���Îü Giga Byte °�$ Giga Byte

Time About 100 years About 8 hours

Table 6.2: Comparison between different sampling rate for modelling system explained in the
example.

system is:

�Òþ , �  ��� ©�   , � | �#° � � ! � ��� � M��� ©�   , � | �#° � � ! � ��� � (6.29)

This time is about 8 hours.

This result shows in table[6.2].
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Chapter 7

Conclusion and further work

7.1 Introduction

This chapter summarises the main findings of this thesis and the work that is reported herein.

The aim of this work was to use TLM for modelling medical ultrasound wave propagation.

It was shown that when TLM is used for modelling medical ultrasound wave propagation, there

is a need for a huge amount of computational power. This problem is the direct result of the

existing sampling theory for TLM modelling. To solve the problem, a new sampling theory

was found for TLM modelling.

In the following sections, the main results of this work are presented and some ideas for further

work are explained.

7.2 The main results of this thesis

The main results of this thesis could be explained as follows:

7.2.1 TLM for modelling ultrasound wave propagation

TLM was originally designed for modelling electromagnetic waves propagation. In this thesis,

the use of it for modelling ultrasound waves propagation was shown.

7.2.2 Using TLM to solve some modelling problems in medical ultrasound wave

propagation

TLM was used to model ultrasound wave propagation and, in particular, array transducers and

Doppler effect.
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7.2.3 New sampling rate theory

It was shown that the original sampling rate that was presented by Johns, is not complete and

a new theory for sampling rate is explained. The new sampling rate theory shows the Johns

sampling rate theory as one part of a more complete solution. The new sampling rate can

be used in modelling ultrasound wave propagation as well as modelling electromagnetic wave

propagation. By using this new sampling rate theory, the computational complexity of TLM

modelling can be reduced dramatically.

7.3 Further work

There are several area that further research can be done.

7.3.1 TLM as a digital filter

It was shown that a TLM mesh can be modelled as two dimensional digital filter. The effect of

this two dimensional filter should be investigated more detail.

7.3.2 Removing boundary effect

It was shown that by modelling TLM as a digital filter, it is possible to design a match filter to

terminate the TLM mesh and remove boundary effects. Some simple FIR filters were used to

approximate the match filter. Some more complex (FIR and IIR) filters could be designed to

terminate the TLM medium.

7.3.3 Doppler effect in some complex situations

The Doppler effect in some situations was presented in this thesis. Further research can be done

on using this technique on more complex situations (For example when source and receiver are

stationary but there are several objects in the medium that are moving1).

1The result of this experiment can be used for modelling ultrasound systems that use Doppler effect to detect the
blood velocity.
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7.3.4 New type of meshes

New type of meshes would generate other types of digital filters. These new types of digital

filters could have better transfer functions from the point of modelling wave propagation.

7.4 Conclusion

It was shown that TLM is a good numerical technique for modelling medical ultrasound wave

propagation. A new digital filter model for TLM mesh was proposed and explained. Based

on this digital filter model, a new way to terminate the TLM mesh to a matching media is

presented.

Since TLM was originally designed for modelling electromagnetic wave propagation, the re-

lationship between electromagnetic waves and sound waves was presented so the TLM can be

used for modelling ultrasound wave propagation too.

Several modelling results were presented to show how TLM could be use to model some inter-

esting wave propagation problems.

It was shown how TLM can be used to model curved surfaces, such as a focusing mirror and a

circular mirror.

TLM was used to model wave steering in an array transducer. It was also shown how to use

TLM to model the Doppler effect.

It was also shown that the sampling rate for TLM modelling is not complete and a new sampling

rate for TLM modelling was presented.
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Appendix A
Original publication

This paper published in the proceeding of :

”First International Conference on Advances in Medical Signal and Information Processing”

organized by IEEE and held in Bristol, UK on September 2000 [98].
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Appendix B
Developers guide to TLM classes

B.1 Abstract

In this document it is explained how to use classes in TLM library to write a TLM model.

B.2 Introduction

TLM library is a collection of classes and functions for writing TLM modelling in C++. The

classes in this library consist of the following classes:

CTlmBasic:The basic class which take care of memory management and processing nodes

and changing data between nodes.This class by it self can’t be used.

CTlmPPM:This class is based on CTlmBasic and add the functionality of saving each frame

in a PPM files to the CTlmBasic. This class can’t be used by itself.

CTlmSimpleThe simplest TLM model. This class is the simplest functional TLM model.

B.3 CTlmBasic

This is the base for all other TLM classes.The main tasks for this class are:

� Allocate the necessary memory for storing node data� De-allocating memory at exit.� Do the iteration and call necessary function for updating node data and getting data from

sources.� Managing Node data
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B.3.1 Definition:

// TlmBasic.h: interface for the CTlmBasic class.

//

//////////////////////////////////////////////////////////////////////

#if !defined(AFX_TLMBASIC_H__C45F5544_8065_11D2_837D_0000B4731445__INCLUDED_)

#define AFX_TLMBASIC_H__C45F5544_8065_11D2_837D_0000B4731445__INCLUDED_

#if _MSC_VER >= 1000

#pragma once

#endif // _MSC_VER >= 1000

#include <math.h>

#include <dsp.h>

typedef enum {

DIR_PX=0,// positive X

DIR_NX,// negative X

DIR_PY,// positive Y

DIR_NY // negative Y

}TDIR;

class CTlmBasic

{

public:

TNODE NodeValue(int X,int Y);

virtual TNODE NodeIntensity(int X,int Y);

virtual TNODE MaxFrameIntensity();
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virtual bool Init(int XDim,int YDim,int Time);

CTlmBasic();

virtual ˜CTlmBasic();

virtual bool DoModel();

protected:

int m_Time;

virtual bool HandleBoundry(int X,int Y);

virtual bool ChangeData();

bool m_Aborted;

virtual bool PreProcessFrame (int Time);

virtual bool PostProcessFrame (int Time);

virtual bool PreProcessNode (int X,int Y,int Time);

virtual bool ProcessNode (int X,int Y,int Time);

virtual bool PostProcessNode(int X,int Y,int Time);

virtual bool InitMesh();

int m_TotalTime;

int m_YDim;

int m_XDim;

TNODE NodeData(int X,int Y,TDIR Dir);

TNODE NodeData(int X,int Y,TDIR Dir, TNODE Data);

private:

TNODE * m_NodeData;

};

#endif // !defined(AFX_TLMBASIC_H__C45F5544_8065_11D2_837D_0000B4731445__INCLUDED_)

B.3.2 Base class

CTlmBasic hasn’t any base class.

163



Developers guide to TLM classes

B.3.3 Data types

TNODE:This is the type of node data. if more accuracy is needed, TNODE maybe changed

to double.

TDIR: This enum type represent the 4 direction around a 2D node.

B.3.4 Global variables:

CTlmBasic hasn’t any global variable which it’s user can change or use it.

B.3.5 Macros:

PI : PI defined as the value of � (3.1415926535897932384626433832795).

B.3.6 Functions:

virtual TNODE NodeIntensity(int X,int Y): Return the value for intensity of a node. In it’s

simplest format it return the absolute value for sum of four voltage in a 2D node.

virtual TNODE MaxFrameIntensity(): Return the maximum intensity for a node in a frame.

Thsi data maybe used for normalizing each frame.

virtual bool DoModeling(bool Flag): This function do the actual modeling. This function

will not return until modeling finished or abort function called. if Flag set to true, then

Do Modeling will create a new thread and start to run on the new thread, otherwise

( Flag=false) there isn’t any new thread and the modeling will be done in the current

thread.

virtual bool Init(int XDim,int YDim,int Time): Initialize a TLM mesh. XDim and YDim

are mesh size and Time is the total time that the modeling will be run.

CTlmBasic(): Constructor, do nothing.

virtual CTlmBasic(): Destructor, delete memory allocated for modeling.

virtual bool HandleBoundry(int X,int Y): Fter calculating each node and on changing data

with other nodes, Nodes which are on boundary must be processed in a espicial way.
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When the ChangeData() function find such nodes, this function will be called to process

them.When investigating boundary effects, you may override this function.

virtual bool ChangeData(): For changing data between nodes. After calculating voltages for

each node, DoModeling() call this function to change data with neighboring nodes. Nor-

mally there isn’t any need to override this function.

virtual bool PreProcessFrame (int Time): This function is called by DoModeling() each time

processing for a new frame is started. This function do nothing by itself.

virtual bool PostProcessFrame (int Time): This function is called by DoModeling()after the

processing for each frame finished.This function do nothing by itself.

virtual bool PreProcessNode (int X,int Y,int Time): This function is called before process-

ing for each node started. This function do nothing by itself.

virtual bool ProcessNode (int X,int Y,int Time): Processing for each node must be done in

this function.Since CTlmBasic is the base for all TLM classes, Nothing is done in this

function.1

virtual bool PostProcessNode(int X,int Y,int Time); This function is called after the process-

ing for each node finished.

virtual bool DoModeling(): This is the actual modeling function. DoModeling(bool Flag)

call this function directly or indirectly based on the value of Flag.There is no need that

you call this function.

virtual bool InitMesh(): Initialise TLM mesh to zero before starting modeling. If you want

to initialize the mesh to something else other than zero you may override it.

TNODE NodeData(int X,int Y,TDIR Dir): For reading specific voltage from a node.

TNODE NodeData(int X,int Y,TDIR Dir, TNODE Data): For writing a specific voltage to

a node.

B.3.7 Implementation:

1CTlmSimple use this function to implement a simple medium.
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// TlmBasic.cpp: implementation of the CTlmBasic class.

//

//////////////////////////////////////////////////////////////////////

#include <malloc.h>

#include <stdio.h>

#include "TlmBasic.h"

#define RETURN_ON_FAIL(x) { if(x==false) return false;}

//////////////////////////////////////////////////////////////////////

// Construction/Destruction

//////////////////////////////////////////////////////////////////////

CTlmBasic::CTlmBasic()

{

}

CTlmBasic::˜CTlmBasic()

{

delete [] m_NodeData;

}

bool CTlmBasic::Init(int XDim, int YDim,int Time)

{

m_XDim=XDim;

m_YDim=YDim;

m_NodeData=new TNODE[m_XDim*m_YDim*4];

m_TotalTime=Time;

return true;

}
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TNODE CTlmBasic::NodeData(int X, int Y,TDIR Dir)

{

return m_NodeData[(((X*m_YDim)+Y)*4)+Dir];

}

TNODE CTlmBasic::NodeData(int X, int Y,TDIR Dir, TNODE Data)

{

TNODE Buffer=m_NodeData[(((X*m_YDim)+Y)*4)+Dir];

m_NodeData[(((X*m_YDim)+Y)*4)+Dir]=Data;

return Buffer ;

}

bool CTlmBasic::InitMesh()

{

for(int X=0;X<m_XDim;X++)

{

for(int Y=0;Y<m_YDim;Y++)

{

NodeData(X,Y,DIR_PX,0);

NodeData(X,Y,DIR_NX,0);

NodeData(X,Y,DIR_PY,0);

NodeData(X,Y,DIR_NY,0);

}

}

return true;

}
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bool CTlmBasic::DoModel()

{

m_Aborted=false;

RETURN_ON_FAIL(InitMesh());

for(m_Time=0;m_Time<m_TotalTime;m_Time++)

{

printf("Processing frame %d\n",m_Time);

RETURN_ON_FAIL(PreProcessFrame(m_Time));

for(int X=0;X<m_XDim;X++)

{

for(int Y=0;Y<m_YDim;Y++)

{

RETURN_ON_FAIL(PreProcessNode(X,Y,m_Time));

RETURN_ON_FAIL(ProcessNode(X,Y,m_Time));

RETURN_ON_FAIL(PostProcessNode(X,Y,m_Time));

}

}

RETURN_ON_FAIL(PostProcessFrame(m_Time));

ChangeData();

if(m_Aborted==true) return false;

}

return true;

}

bool CTlmBasic::PreProcessFrame(int Time)

{

return true;

}

bool CTlmBasic::PostProcessFrame(int Time)
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{

return true;

}

bool CTlmBasic::PreProcessNode(int X,int Y,int Time)

{

return true;

}

bool CTlmBasic::ProcessNode(int X,int Y,int Time)

{

return true;

}

bool CTlmBasic::PostProcessNode(int X,int Y, int Time)

{

return true;

}

TNODE CTlmBasic::MaxFrameIntensity()

{

TNODE Buffer,MaxData;

for(int Y=0;Y<m_YDim;Y++){

for(int X=0;X<m_XDim;X++){

Buffer=NodeIntensity(X,Y);

if (MaxData<Buffer){

MaxData=Buffer;

}

}

}

169



Developers guide to TLM classes

return MaxData;

}

TNODE CTlmBasic::NodeIntensity(int X, int Y)

{

TNODE Buffer=(NodeData(X,Y,DIR_PX)+NodeData(X,Y,DIR_NX)+NodeData(X,Y,DIR_PY)+NodeData(X,Y,DIR_NY));

return (TNODE)fabs((double)Buffer);

}

bool CTlmBasic::ChangeData()

{

TNODE Buffer;

for(int X=0;X<m_XDim;X++)

{

for(int Y=0;Y<m_YDim;Y++)

{

if((X!=0) & (Y!=0) & (X!=m_XDim-1) & (Y!=m_YDim-1)) // not on boundry

{

Buffer=NodeData(X,Y,DIR_PX,NodeData(X+1,Y,DIR_NX));

NodeData(X+1,Y,DIR_NX,Buffer);

// Buffer=NodeData(X,Y,DIR_NX,NodeData(X-1,Y,DIR_PX));

// NodeData(X-1,Y,DIR_PX,Buffer);

Buffer=NodeData(X,Y,DIR_PY,NodeData(X,Y+1,DIR_NY));

NodeData(X,Y+1,DIR_NY,Buffer);

// Buffer=NodeData(X,Y,DIR_NY,NodeData(X,Y-1,DIR_PY));

// NodeData(X,Y-1,DIR_PY,Buffer);

}

else

{

HandleBoundry(X,Y);
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}

}

}

return true;

}

bool CTlmBasic::HandleBoundry(int X, int Y)

{

if(X==0)

{

NodeData(X+1,Y,DIR_NX,NodeData(X,Y,DIR_PX));

// NodeData(X,Y,DIR_PX, 0.25 * NodeData(X,Y,DIR_PX));

}

else

if(X==m_XDim-1)

{

NodeData(X,Y,DIR_NX,NodeData(X-1,Y,DIR_PX));

// NodeData(X,Y,DIR_NX, 0.25 * NodeData(X,Y,DIR_NX));

}

else{

NodeData(X,Y,DIR_PX,NodeData(X+1,Y,DIR_NX));

NodeData(X,Y,DIR_NX,NodeData(X-1,Y,DIR_PX));

}

if(Y==0)

{

NodeData(X,Y+1,DIR_NY,NodeData(X,Y,DIR_PY));

// NodeData(X,Y,DIR_PY, 0.25 * NodeData(X,Y,DIR_PY));

}

else

if(Y==m_YDim-1)
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{

NodeData(X,Y,DIR_NY,NodeData(X,Y-1,DIR_PY));

// NodeData(X,Y,DIR_NY, 0.25 * NodeData(X,Y,DIR_NY));

}

else

{

NodeData(X,Y,DIR_PY,NodeData(X,Y+1,DIR_NY));

NodeData(X,Y,DIR_NY,NodeData(X,Y-1,DIR_PY));

}

return true;

}

TNODE CTlmBasic::NodeValue(int X, int Y)

{

if(X==0 && Y==99)

{

return (NodeData(X,Y,DIR_PX)+NodeData(X,Y,DIR_NX)+NodeData(X,Y,DIR_PY)+NodeData(X,Y,DIR_NY));

}

return (NodeData(X,Y,DIR_PX)+NodeData(X,Y,DIR_NX)+NodeData(X,Y,DIR_PY)+NodeData(X,Y,DIR_NY));

}

B.3.8 Programming:

You must inherited from this class before you can use it.In inherited class do the followings:

1. Override ProcessNode() to implement the medium properties.

2. Override PreProcessFrame() or PreProcessNode() to add source signal to the medium.2

2if you have one source signal it is simpler to override PreProcessNode() and if you have several source signal it
is simpler to override PreProcessFrame()
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3. Override PostProcessFrame() or PostProcessNode() to save receiver signal.3

4. Add any other capability that you want to your class.

In the main program do the followings:

1. Crate an instance of your class.

2. Initialize the TLM mesh by calling Init().

3. Do any initialization you class needed.

4. Start to model by calling DoModelling().

5. On exiting from your program, CTlmBasic destructor will clean memories that it allo-

cated for modeling.

B.4 CTlmPPM:

CTlmPPM add the functionality needed to write frames in PPM format. CTlmPPM doesn’t

save each frame by itself and the inherited function must call SaveFarem() for saving frame4.

B.4.1 Definition:

// TlmPPM.cpp: implementation of the CTlmPPM class.

//

//////////////////////////////////////////////////////////////////////

#include <stdio.h>

#include <string.h>

#include "TlmPPM.h"

//////////////////////////////////////////////////////////////////////

3if you have only one receiver it is simpler to use PostProcessNode() but if you have several receiver or you want
to save the data for a complete frame then you must use PostProcessFrame().

4This function maybe called in PostProcessFrame()
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// Construction/Destruction

//////////////////////////////////////////////////////////////////////

CTlmPPM::CTlmPPM()

{

m_FileNameTemplate[0]=0;

}

CTlmPPM::˜CTlmPPM()

{

}

bool CTlmPPM::SaveFrame(int FrameNumber)

{

if(m_FileNameTemplate[0]==0) return true;

char FileName[255];

int Red,Blue,Green;

sprintf(FileName,m_FileNameTemplate,FrameNumber);

FILE * FPointer=fopen(FileName,"wb");

fprintf(FPointer,"P6\n");

fprintf(FPointer,"%d %d\n",m_XDim,m_YDim);

fprintf(FPointer,"255\n");

//

TNODE MaxIntensity=MaxSignal();

for(int Y=m_YDim-1;Y>=0;Y--){

for(int X=0;X<m_XDim;X++){

if(IsOnAnObject(X,Y)>=0)

{

Red=255;

Blue=255;

Green=255;

}
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else

{

RGBData(X,Y,Red,Blue,Green,MaxIntensity);

// draw boundry

if(X==0 || X==m_XDim-1 || Y==0 || Y==m_YDim-1){

// Blue=255;

// Green=255;

Red=255;

}

}

fwrite(&Red,1,1,FPointer);

fwrite(&Green,1,1,FPointer);

fwrite(&Blue,1,1,FPointer);

}

}

fclose(FPointer);

return true;

}

bool CTlmPPM::SetFileTemplate(char * Template)

{

strcpy(m_FileNameTemplate,Template);

return true;

}

#define MAXGREY (255)

#define MAXRANGE (100)

#define DAVE (1)

#define PETER (2)

#define COLORSETUP DAVE
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bool CTlmPPM::RGBData(int X, int Y, int & Red, int & Blue, int & Green,TNODE MaxFrameIntensity)

{

#if (COLORSETUP==PETER)

TNODE Value=NodeIntensity(X,Y);

if(Value> .5* MaxFrameIntensity) Value=MaxFrameIntensity;

Green = 0;

Red = Value * 255/MaxFrameIntensity;

Blue = (MaxFrameIntensity-Value)*255/MaxFrameIntensity;

#endif

#if (COLORSETUP == DAVE)

int Colour = (int)(MAXGREY*(NodeIntensity(X,Y)/MaxFrameIntensity));

if(Colour >MAXRANGE )

Colour=MAXRANGE;

Colour*=255.0/MAXRANGE;

// if(Colour>0)

// {

// fprintf(fp,"%d %d \t%d\t%d\n",m_Time,X,Y,Colour);

// }

if (Colour>MAXGREY) Colour=MAXGREY;

if (Colour<0) Colour=0;

if (Colour<(MAXGREY/6))

{

Red = 0; Green = Colour*6; Blue = MAXGREY;

} else if (Colour<(MAXGREY/3))

{

Red = 0; Green = MAXGREY; Blue = MAXGREY - 6*(Colour - MAXGREY/6);

} else if (Colour<(MAXGREY*11/24))

{

Red = (Colour - MAXGREY/3)*8; Green = MAXGREY; Blue = 0;
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} else if (Colour<(MAXGREY*7/12))

{

Red = MAXGREY; Green = MAXGREY - 8*(Colour - MAXGREY*11/24); Blue = 0;

} else if (Colour<(MAXGREY*5/6))

{

Red = MAXGREY; Green = 4*(Colour - MAXGREY*7/12); Blue = 0;

} else {

Red = MAXGREY; Green = MAXGREY; Blue = 12*(Colour - MAXGREY*5/6);

}

if (Blue < 0) Blue = 0;

if (Blue > MAXGREY) Blue = MAXGREY;

if (Red < 0) Red = 0;

if (Red > MAXGREY) Red = MAXGREY;

if (Green < 0) Green = 0;

if (Green > MAXGREY) Green = MAXGREY;

#endif

return true;

}

/*bool CTlmPPM::RGBData(int X, int Y, int & Red, int & Blue, int & Green,TNODE MaxFrameIntensity)

{

int NodeInt=(int)(255*(NodeIntensity(X,Y)/MaxFrameIntensity));

unsigned int Palate[256]={ 0x000000, 0x003300, 0x006600, 0x009900, 0x00CC00, 0x00FF00,

0x000033, 0x003333, 0x006633, 0x009933, 0x00CC33, 0x00FF33,

0x000066, 0x003366, 0x006666, 0x009966, 0x00CC66, 0x00FF66,

0x000099, 0x003399, 0x006699, 0x009999, 0x00CC99, 0x00FF99,

0x0000CC, 0x0033CC, 0x0066CC, 0x0099CC, 0x00CCCC, 0x00FFCC,

0x0000FF, 0x0033FF, 0x0066FF, 0x0099FF, 0x00CCFF, 0x00FFFF,

0x330000, 0x333300, 0x336600, 0x339900, 0x33CC00, 0x33FF00,

0x330033, 0x333333, 0x336633, 0x339933, 0x33CC33, 0x33FF33,

0x330066, 0x333366, 0x336666, 0x339966, 0x33CC66, 0x33FF66,
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0x330099, 0x333399, 0x336699, 0x339999, 0x33CC99, 0x33FF99,

0x3300CC, 0x3333CC, 0x3366CC, 0x3399CC, 0x33CCCC, 0x33FFCC,

0x3300FF, 0x3333FF, 0x3366FF, 0x3399FF, 0x33CCFF, 0x33FFFF,

0x660000, 0x663300, 0x666600, 0x669900, 0x66CC00, 0x66FF00,

0x660033, 0x663333, 0x666633, 0x669933, 0x66CC33, 0x66FF33,

0x660066, 0x663366, 0x666666, 0x669966, 0x66CC66, 0x66FF66,

0x660099, 0x663399, 0x666699, 0x669999, 0x66CC99, 0x66FF99,

0x6600CC, 0x6633CC, 0x6666CC, 0x6699CC, 0x66CCCC, 0x66FFCC,

0x6600FF, 0x6633FF, 0x6666FF, 0x6699FF, 0x66CCFF, 0x66FFFF,

0x990000, 0x993300, 0x996600, 0x999900, 0x99CC00, 0x99FF00,

0x990033, 0x993333, 0x996633, 0x999933, 0x99CC33, 0x99FF33,

0x990066, 0x993366, 0x996666, 0x999966, 0x99CC66, 0x99FF66,

0x990099, 0x993399, 0x996699, 0x999999, 0x99CC99, 0x99FF99,

0x9900CC, 0x9933CC, 0x9966CC, 0x9999CC, 0x99CCCC, 0x99FFCC,

0x9900FF, 0x9933FF, 0x9966FF, 0x9999FF, 0x99CCFF, 0x99FFFF,

0xCC0000, 0xCC3300, 0xCC6600, 0xCC9900, 0xCCCC00, 0xCCFF00,

0xCC0033, 0xCC3333, 0xCC6633, 0xCC9933, 0xCCCC33, 0xCCFF33,

0xCC0066, 0xCC3366, 0xCC6666, 0xCC9966, 0xCCCC66, 0xCCFF66,

0xCC0099, 0xCC3399, 0xCC6699, 0xCC9999, 0xCCCC99, 0xCCFF99,

0xCC00CC, 0xCC33CC, 0xCC66CC, 0xCC99CC, 0xCCCCCC, 0xCCFFCC,

0xCC00FF, 0xCC33FF, 0xCC66FF, 0xCC99FF, 0xCCCCFF, 0xCCFFFF,

0xFF0000, 0xFF3300, 0xFF6600, 0xFF9900, 0xFFCC00, 0xFFFF00,

0xFF0033, 0xFF3333, 0xFF6633, 0xFF9933, 0xFFCC33, 0xFFFF33,

0xFF0066, 0xFF3366, 0xFF6666, 0xFF9966, 0xFFCC66, 0xFFFF66,

0xFF0099, 0xFF3399, 0xFF6699, 0xFF9999, 0xFFCC99, 0xFFFF99,
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0xFF00CC, 0xFF33CC, 0xFF66CC, 0xFF99CC, 0xFFCCCC, 0xFFFFCC,

0xFF00FF, 0xFF33FF, 0xFF66FF, 0xFF99FF, 0xFFCCFF, 0xFFFFFF };

// int NodeInt=(int)(0xffffff*(NodeIntensity(X,Y)/MaxFrameIntensity));

Red =((unsigned char)(Palate[NodeInt]>>16));

Green=((unsigned char)(Palate[NodeInt]>>8));

Blue =((unsigned char)(Palate[NodeInt]));

// if(NodeInt!=0)

// {

//

// Red= ((unsigned char)(NodeInt>>16));

// Green=((unsigned char)(NodeInt>>8));

// Blue= ((unsigned char)(NodeInt));

// }

// Red=(int)(255*(NodeIntensity(X,Y)/MaxFrameIntensity));

// Blue=Red;

// Green=Red;

return true;

}

*/

TNODE CTlmPPM::MaxSignal()

{

return 1;

}
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B.4.2 Base class:

CTlmPPM is based on CTlmBasic.

B.4.3 Data types

CTlmPPM hasn’t any internal data types.

B.4.4 Global variables:

This class hasn’t any global variable that it’s user can read or change them.

B.4.5 Functions:

virtual bool SetFileTemplate(char * Template): Set the file template for writing each frame

with that name. for example if the template set to ”frame ÿ d” then the first frame ( frame� ) will be save as ”frame � .ppm” and frame � as ”frame � .ppm”. File template use the

same rules as printf format string.

CTlmPPM(): Constructor.

virtual CTlmPPM(): Destructor.

bool SaveFrame(int FrameNumber): Save a frame in PPM format. File name for saving is

created based on two parameter: FileTemplate and frame Number.For more information

see SetFileTemplate().

virtual bool RGBData(int X,int Y,int � Red,int � Blue,int � Green,TNODE MaxFrameIntensity):

This function return the RGB value for each node.It maybe overridden to create a colorful

image based on properties of the medium or wave properties.

B.4.6 Implementation:

// TlmPPM.cpp: implementation of the CTlmPPM class.

//

//////////////////////////////////////////////////////////////////////

#include <stdio.h>
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#include <string.h>

#include "TlmPPM.h"

//////////////////////////////////////////////////////////////////////

// Construction/Destruction

//////////////////////////////////////////////////////////////////////

CTlmPPM::CTlmPPM()

{

m_FileNameTemplate[0]=0;

}

CTlmPPM::˜CTlmPPM()

{

}

bool CTlmPPM::SaveFrame(int FrameNumber)

{

if(m_FileNameTemplate[0]==0) return true;

char FileName[255];

int Red,Blue,Green;

sprintf(FileName,m_FileNameTemplate,FrameNumber);

FILE * FPointer=fopen(FileName,"wb");

fprintf(FPointer,"P6\n");

fprintf(FPointer,"%d %d\n",m_XDim,m_YDim);

fprintf(FPointer,"255\n");

//

TNODE MaxIntensity=MaxSignal();

for(int Y=m_YDim-1;Y>=0;Y--){

for(int X=0;X<m_XDim;X++){

if(IsOnAnObject(X,Y)>=0)
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{

Red=255;

Blue=255;

Green=255;

}

else

{

RGBData(X,Y,Red,Blue,Green,MaxIntensity);

// draw boundry

if(X==0 || X==m_XDim-1 || Y==0 || Y==m_YDim-1){

// Blue=255;

// Green=255;

Red=255;

}

}

fwrite(&Red,1,1,FPointer);

fwrite(&Green,1,1,FPointer);

fwrite(&Blue,1,1,FPointer);

}

}

fclose(FPointer);

return true;

}

bool CTlmPPM::SetFileTemplate(char * Template)

{

strcpy(m_FileNameTemplate,Template);

return true;

}
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#define MAXGREY (255)

#define MAXRANGE (100)

#define DAVE (1)

#define PETER (2)

#define COLORSETUP DAVE

bool CTlmPPM::RGBData(int X, int Y, int & Red, int & Blue, int & Green,TNODE MaxFrameIntensity)

{

#if (COLORSETUP==PETER)

TNODE Value=NodeIntensity(X,Y);

if(Value> .5* MaxFrameIntensity) Value=MaxFrameIntensity;

Green = 0;

Red = Value * 255/MaxFrameIntensity;

Blue = (MaxFrameIntensity-Value)*255/MaxFrameIntensity;

#endif

#if (COLORSETUP == DAVE)

int Colour = (int)(MAXGREY*(NodeIntensity(X,Y)/MaxFrameIntensity));

if(Colour >MAXRANGE )

Colour=MAXRANGE;

Colour*=255.0/MAXRANGE;

// if(Colour>0)

// {

// fprintf(fp,"%d %d \t%d\t%d\n",m_Time,X,Y,Colour);

// }

if (Colour>MAXGREY) Colour=MAXGREY;

if (Colour<0) Colour=0;

if (Colour<(MAXGREY/6))

{

Red = 0; Green = Colour*6; Blue = MAXGREY;

} else if (Colour<(MAXGREY/3))
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{

Red = 0; Green = MAXGREY; Blue = MAXGREY - 6*(Colour - MAXGREY/6);

} else if (Colour<(MAXGREY*11/24))

{

Red = (Colour - MAXGREY/3)*8; Green = MAXGREY; Blue = 0;

} else if (Colour<(MAXGREY*7/12))

{

Red = MAXGREY; Green = MAXGREY - 8*(Colour - MAXGREY*11/24); Blue = 0;

} else if (Colour<(MAXGREY*5/6))

{

Red = MAXGREY; Green = 4*(Colour - MAXGREY*7/12); Blue = 0;

} else {

Red = MAXGREY; Green = MAXGREY; Blue = 12*(Colour - MAXGREY*5/6);

}

if (Blue < 0) Blue = 0;

if (Blue > MAXGREY) Blue = MAXGREY;

if (Red < 0) Red = 0;

if (Red > MAXGREY) Red = MAXGREY;

if (Green < 0) Green = 0;

if (Green > MAXGREY) Green = MAXGREY;

#endif

return true;

}

/*bool CTlmPPM::RGBData(int X, int Y, int & Red, int & Blue, int & Green,TNODE MaxFrameIntensity)

{

int NodeInt=(int)(255*(NodeIntensity(X,Y)/MaxFrameIntensity));

unsigned int Palate[256]={ 0x000000, 0x003300, 0x006600, 0x009900, 0x00CC00, 0x00FF00,

0x000033, 0x003333, 0x006633, 0x009933, 0x00CC33, 0x00FF33,

0x000066, 0x003366, 0x006666, 0x009966, 0x00CC66, 0x00FF66,

0x000099, 0x003399, 0x006699, 0x009999, 0x00CC99, 0x00FF99,

0x0000CC, 0x0033CC, 0x0066CC, 0x0099CC, 0x00CCCC, 0x00FFCC,

0x0000FF, 0x0033FF, 0x0066FF, 0x0099FF, 0x00CCFF, 0x00FFFF,

184



Developers guide to TLM classes

0x330000, 0x333300, 0x336600, 0x339900, 0x33CC00, 0x33FF00,

0x330033, 0x333333, 0x336633, 0x339933, 0x33CC33, 0x33FF33,

0x330066, 0x333366, 0x336666, 0x339966, 0x33CC66, 0x33FF66,

0x330099, 0x333399, 0x336699, 0x339999, 0x33CC99, 0x33FF99,

0x3300CC, 0x3333CC, 0x3366CC, 0x3399CC, 0x33CCCC, 0x33FFCC,

0x3300FF, 0x3333FF, 0x3366FF, 0x3399FF, 0x33CCFF, 0x33FFFF,

0x660000, 0x663300, 0x666600, 0x669900, 0x66CC00, 0x66FF00,

0x660033, 0x663333, 0x666633, 0x669933, 0x66CC33, 0x66FF33,

0x660066, 0x663366, 0x666666, 0x669966, 0x66CC66, 0x66FF66,

0x660099, 0x663399, 0x666699, 0x669999, 0x66CC99, 0x66FF99,

0x6600CC, 0x6633CC, 0x6666CC, 0x6699CC, 0x66CCCC, 0x66FFCC,

0x6600FF, 0x6633FF, 0x6666FF, 0x6699FF, 0x66CCFF, 0x66FFFF,

0x990000, 0x993300, 0x996600, 0x999900, 0x99CC00, 0x99FF00,

0x990033, 0x993333, 0x996633, 0x999933, 0x99CC33, 0x99FF33,

0x990066, 0x993366, 0x996666, 0x999966, 0x99CC66, 0x99FF66,

0x990099, 0x993399, 0x996699, 0x999999, 0x99CC99, 0x99FF99,

0x9900CC, 0x9933CC, 0x9966CC, 0x9999CC, 0x99CCCC, 0x99FFCC,

0x9900FF, 0x9933FF, 0x9966FF, 0x9999FF, 0x99CCFF, 0x99FFFF,

0xCC0000, 0xCC3300, 0xCC6600, 0xCC9900, 0xCCCC00, 0xCCFF00,

0xCC0033, 0xCC3333, 0xCC6633, 0xCC9933, 0xCCCC33, 0xCCFF33,

0xCC0066, 0xCC3366, 0xCC6666, 0xCC9966, 0xCCCC66, 0xCCFF66,

0xCC0099, 0xCC3399, 0xCC6699, 0xCC9999, 0xCCCC99, 0xCCFF99,

0xCC00CC, 0xCC33CC, 0xCC66CC, 0xCC99CC, 0xCCCCCC, 0xCCFFCC,

0xCC00FF, 0xCC33FF, 0xCC66FF, 0xCC99FF, 0xCCCCFF, 0xCCFFFF,
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0xFF0000, 0xFF3300, 0xFF6600, 0xFF9900, 0xFFCC00, 0xFFFF00,

0xFF0033, 0xFF3333, 0xFF6633, 0xFF9933, 0xFFCC33, 0xFFFF33,

0xFF0066, 0xFF3366, 0xFF6666, 0xFF9966, 0xFFCC66, 0xFFFF66,

0xFF0099, 0xFF3399, 0xFF6699, 0xFF9999, 0xFFCC99, 0xFFFF99,

0xFF00CC, 0xFF33CC, 0xFF66CC, 0xFF99CC, 0xFFCCCC, 0xFFFFCC,

0xFF00FF, 0xFF33FF, 0xFF66FF, 0xFF99FF, 0xFFCCFF, 0xFFFFFF };

// int NodeInt=(int)(0xffffff*(NodeIntensity(X,Y)/MaxFrameIntensity));

Red =((unsigned char)(Palate[NodeInt]>>16));

Green=((unsigned char)(Palate[NodeInt]>>8));

Blue =((unsigned char)(Palate[NodeInt]));

// if(NodeInt!=0)

// {

//

// Red= ((unsigned char)(NodeInt>>16));

// Green=((unsigned char)(NodeInt>>8));

// Blue= ((unsigned char)(NodeInt));

// }

// Red=(int)(255*(NodeIntensity(X,Y)/MaxFrameIntensity));

// Blue=Red;

// Green=Red;

return true;

}

*/
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TNODE CTlmPPM::MaxSignal()

{

return 1;

}

B.4.7 Programming:

you must inherited from this class before you can use it.In inherited class do the followings:

1. Override ProcessNode() to implement the medium properties.

2. Override PreProcessFrame() or PreProcessNode() to add source signal to the medium.5

3. Override PostProcessFrame() or PostProcessNode() to save receiver signal.6

4. When you want to save a frame data7, call SaveFrame() with appropriate frame number

(usually time stamp of the frame).

5. If you want to add color to image based on medium property or wave property, override

RGBData().

6. Add any other capability that you want to your class.

In the main program do the followings:

1. Crate an instance of your class.

2. Initialize the TLM mesh by calling Init().

3. Initialize PPM file name creation by calling SetFileTemplate().

4. Do any initialization your class needed.

5. Start to model by calling DoModelling().

5if you have one source signal it is simpler to override PreProcessNode() and if you have several source signal it
is simpler to override PreProcessFrame()

6if you have only one receiver it is simpler to use PostProcessNode() but if you have several receiver or you want
to save the data for a complete frame then you must use PostProcessFrame().

7usually this function is called in PostProcessFrame()
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