Medical Ultrasound Imaging
Monday, 20 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Contrast Agents' p13
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Contrast Agents' found in 74 articles
5
terms [
] - 69 definitions [
]
Result Pages :
Power Mode
In power mode the amplitude (power) of color Doppler signals is displayed, regardless of the velocity. Power does not have negative values and is independent of sampling frequency. An aliasing artifact does not occur in power mode images. Caused by plotting the quantity enhanced by echo contrast agents in a power map, power mode is often used in contrast Doppler ultrasound examinations.
Also known as energy mode.
• 
View NEWS results for 'Power Mode' (3).Open this link in a new window.
Pulse Inversion Imaging
(PII) Pulse inversion imaging (also called phase inversion imaging) is a non-linear imaging method specifically made for enhanced detection of microbubble ultrasound contrast agents. In PII, two pulses are sent in rapid succession into the tissue; the second pulse is a mirror image of the first. The resulting echoes are added at reception. Linear scattering of the two pulses will give two echoes which are inverted copies of each other, and these echoes will therefore cancel out when added.
Linear scattering dominates in tissues. Echoes from linear scatterers such as tissue cancel, whereas those from gas microbubbles do not. Non-linear scattering of the two pulses will give two echoes which do not cancel out completely due to different bubble response to positive and negative pressures of equal magnitude. The harmonic components add, and the signal intensity difference between non-linear and linear scatterers is therefore increased. The resulting images show high sensitivity to bubbles at the resolution of a conventional image.
In harmonic imaging, the frequency range of the transmitted pulse and the received signal should not overlap, but this restriction is less in pulse inversion imaging since the transmit frequencies are not filtered out, but rather subtracted. Broader transmit and receive bandwidths are therefore allowed, giving shorter pulses and improved axial resolution, hence the alternative term wideband harmonic imaging. Many ultrasound machines offer some form of pulse inversion imaging.

See also Pulse Inversion Doppler, Narrow Bandwidth, Dead Zone, Ultrasound Phantom.
Release Burst Imaging
Release burst imaging is a method based on the combination of multiple high frequency, broadband-detection pulses with a separate release burst. Release burst imaging is optimally suited to the characteristic of ultrasound contrast agents.
This method allows to improve both contrast sensitivity and imaging resolution. Imaging and transient enhanced scattering can be optimized separately. The release burst mode can be combined with a Doppler method to remove residual clutter signals from moving tissue.

See also Repetition Rate.
Second Generation USCA
The second generation ultrasound contrast agents (UCA/USCA) are both sufficiently small and stable to pass into the systemic circulation, and these contrast media enhance the Doppler signal in various arteries after intravenous injection. Second generation agents have a short live, the contrast effect is over in a few minutes.
Sonazoid™
Sonazoid™ is an ultrasound contrast agent (UCA) consisting of stabilized gas microbubbles in an aqueous suspension. Sonazoid™ has overcome the stability problems of first generation USCA and can produce myocardial perfusion images. Myocardial imaging using ultrasound contrast agents provides diagnosis of chronic heart disease and assessment of the coronary arteries and of the coronary blood flow reserve.
Sonazoid™ is taken up by healthy Kupffer cells in the liver and spleen, but break down in high amplitude ultrasound imaging modes such as color Doppler imaging. The bubble rupture produces a transient pressure wave, which results in a characteristic mosaic color pattern from tissues containing the microbubbles (induced acoustic emission). Liver tumors without Kupffer cells will not display the mosaic pattern and can therefore be identified easily.
Drug Information and Specification
RESEARCH NAME
NC100100
DEVELOPER
INDICATION -
DEVELOPMENT STAGE
Development in USA and EU suspended
APPLICATION
-
TYPE
Microbubble
Lipid Stabilized (not disclosed)
CHARGE
Negative
Perfluorobutane
MICROBUBBLE SIZE
-
PRESENTATION
-
STORAGE
-
PREPARATION
Reconstitute with 2mL water
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]