Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Ultrasound Machine' p4
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Ultrasound Machine' found in 27 articles
2
terms [
] - 25 definitions [
]
Result Pages :
Printer
Printers can be used to capture a hard copy of the image from the display of the ultrasound machine.

Pulse Inversion Imaging
(PII) Pulse inversion imaging (also called phase inversion imaging) is a non-linear imaging method specifically made for enhanced detection of microbubble ultrasound contrast agents. In PII, two pulses are sent in rapid succession into the tissue; the second pulse is a mirror image of the first. The resulting echoes are added at reception. Linear scattering of the two pulses will give two echoes which are inverted copies of each other, and these echoes will therefore cancel out when added.
Linear scattering dominates in tissues. Echoes from linear scatterers such as tissue cancel, whereas those from gas microbubbles do not. Non-linear scattering of the two pulses will give two echoes which do not cancel out completely due to different bubble response to positive and negative pressures of equal magnitude. The harmonic components add, and the signal intensity difference between non-linear and linear scatterers is therefore increased. The resulting images show high sensitivity to bubbles at the resolution of a conventional image.
In harmonic imaging, the frequency range of the transmitted pulse and the received signal should not overlap, but this restriction is less in pulse inversion imaging since the transmit frequencies are not filtered out, but rather subtracted. Broader transmit and receive bandwidths are therefore allowed, giving shorter pulses and improved axial resolution, hence the alternative term wideband harmonic imaging. Many ultrasound machines offer some form of pulse inversion imaging.

See also Pulse Inversion Doppler, Narrow Bandwidth, Dead Zone, Ultrasound Phantom.
Quadrature Detection
Quadrature detection is used in Doppler ultrasound as well as in magnetic resonance imaging and is also called quadrature demodulation or phase quadrature technique. Quadrature detection is the acquisition of Mx and My simultaneously as a function of time by using two separate detector channels. This signal processing method is used for directional Doppler in which the signal reference frequency for the two channels has a phase shift of 1/4 period. The output Doppler signal phase for both channels also depends on the Doppler shift whether positive or negative.
The fast Fourier transform analyzer performs spectral Doppler analysis in ultrasound machines and displays different quadrature Doppler frequencies, when a sample volume cursor is used along time.
Real-Time Scanner
Most usual ultrasound machines are 2D real-time systems. This types of ultrasound scanners allow to assess both motion and anatomy, including the motion of heart valves, the movement of intestines and lungs and also to guide interventions, like for example a biopsy or a laparoscopic ultrasound.
A standard real-time scanner consists of a mobile console with the monitor on the top and rows of small containers at the bottom to accommodate a variety of scanner probes. The linear, curved or phased array transducers are usually equipped with multiple crystals or in some cases with a moving crystal. A real-time scanner may be e.g., a mechanical scanner or electronic array scanner.

See also Musculoskeletal and Joint Ultrasound.
Receiver
The Receiver is the component of the ultrasound machine that receives the current generated in the transducer from the returning sound waves.

See also Blanking Distance, and Range Gating.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]