Medical Ultrasound Imaging
Saturday, 27 April 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Gating' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Gating' found in 9 articles
1
term [
] - 8 definitions [
]
Result Pages :
Range Gating
Range gating utilized the selection of a returning ultrasound wave according to its depth by receiver activation at the appropriate time delay. The ultrasonic signal is selected by the range gate.
Composite Array
Composite arrays are combinations of piezoelectric ceramics and polymers that form a new material with different properties. Piezocomposites improve the performance of usual arrays such as the mechanically scanned annular array and the linear phased array.
Piezocomposites reduce the acoustic impedance with a better impedance match with tissue. The result is a reduction of the reverberation level in the near field. Unwanted surface waves propagating laterally over the transducer are suppressed. The composite materials allow to vary the electromechanical coupling constant, and to give better control over the trade-off between sensitivity and bandwidth.

See also Narrow Bandwidth, Dead Zone, Ultrasound Phantom.
Depth
To calculate the echo position, a constant sound speed of 1538.5 m/sec is assumed. Tissue penetration is frequency depended, if the frequency increases, the imaging depth decreases. The range resolution defines the depth. Ultrasound propagating in tissue is attenuated due to scattering and absorption. The attenuation is proportional to depth and frequency and is typically in the range from 0.5 to 1 dB/(MHz cm).

See also Attenuation Coefficient, Proximity Sensor, and Echo Ranging.
Non-Linear Propagation
The propagation of high amplitude ultrasound waves is inadequate described by a linear wave equation. Non-linear propagation is to expect if the power levels are high enough to make non-linear effects significant. A non-linear propagation results in the distortion of the transmitted waveforms, resulting in the generation of harmonics of the initial frequency components transmitted by the transducer.
In the near field of ultrasound probes, the occurring diffraction and focusing effects make this process complex. The distortion of a wavefront propagating in a medium in which the compressional phase moves slightly faster than the rarefactional phase, results is the conversion of some wave energy into higher harmonics of the fundamental frequency. The effect increases strongly with increasing wave amplitude.
Pregnancy Ultrasound
Pregnancy ultrasound plays a crucial role in monitoring the health and development of the fetus throughout pregnancy. It serves as a screening tool with various applications, including:
Verification of Due Date and Assessment of Pregnancy Health:
Fetal ultrasound examinations are used to accurately determine the estimated due date of the baby. They also aid in investigating the causes of bleeding during pregnancy and assessing the overall health and well-being of the fetus.
Evaluation of Fetal Development and Gender:
Ultrasound allows for visualizing the growth and development of the fetus, including assessing fetal anatomy and detecting any potential defects. Additionally, it can determine the gender of the baby, if desired by the parents.
Measurement of Amniotic Fluid and Placental Assessment:
Ultrasound is utilized to measure the amniotic fluid levels, which provide insights into fetal well-being and the functioning of the placenta. It also helps evaluate the condition of the placenta, ensuring proper nutrient and oxygen supply to the developing baby.
Early Pregnancy Confirmation and Multiple Fetuses Detection:
Around week five to seven of pregnancy, ultrasound is utilized to confirm the pregnancy, determine the fetal size, and detect the presence of multiple fetuses. It aids in distinguishing between intrauterine and ectopic pregnancies, ensuring appropriate management.
Third-Trimester Evaluation:
As the pregnancy progresses, ultrasound assessments are conducted to evaluate fetal size, position, growth, and the condition of the placenta. This information assists healthcare providers in monitoring the well-being of the fetus and planning for a safe delivery.
Guiding Procedures:
Ultrasound plays a vital role in guiding invasive procedures such as amniocentesis and chorionic villus sampling. It helps guide the placement of a needle to collect cells from the amniotic fluid or placenta, aiding in genetic testing and diagnosing potential fetal abnormalities.


See also Doppler Fluximetry in Pregnancy, Fetal Ultrasound, Obstetric and Gynecologic Ultrasound and Vaginal Probe.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]