Medical Ultrasound Imaging
Friday, 10 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Probe Cleaning' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Probe Cleaning' found in 6 articles
1
term [
] - 2 definitions [
] - 3 booleans [
]
Result Pages :
Probe Cleaning
After each examination, probes used on the skin surface should be cleaned with soap and water or quaternary ammonium sprays or wipes as directed by the manufacturer. Additional cleansing may be necessary in cases of blood or other contamination.
Handle
A handle or probe contains the transducer elements and is attached to the system via a relatively long coaxial cable. Handles are selected via high voltage (HV) relays. In most ultrasound machines, several different handles are available to be connected to the system, allowing the operator to select the appropriate transducer for optimal imaging.

See also Probe Cleaning, and Transducer Assembly.
Probe
In the field of medical ultrasound imaging, the term 'probe' specifically refers to the ultrasound transducer and represent the handheld device that emits and receives ultrasound waves during an examination.
The probe encompasses various components such as the elements, backing material, electrodes, matching layer, and protective face that are responsible for both emitting and receiving the sound waves. Aperture, known also as the footprint, is the part of the probe that is in contact with the body. When the emitted sound waves encounter body tissues, they generate reflections that are received by the probe, which then generates a corresponding signal. In most cases, the probe emits ultrasound waves for only about 10% of the time and receives them for the remaining 90%.
Probes are available in different shapes and sizes to accommodate various scanning situations. The footprint is linked to the arrangement of the piezoelectric crystals and comes in different shapes and sizes e.g. linear array transducer//convex transducer. The transducer plays a huge role in image quality and is one of the most expensive parts of the ultrasound machine. Mechanical probes steer the ultrasound beam driven by a motor and are capable of producing high-quality images, but they are prone to wear and tear. Mechanical probes have been mostly replaced by electronic multi-element transducers, but mechanical 3D probes still remain for abdominal and Ob-Gyn applications.
In summary, the terms 'ultrasound transducer,' 'probe,' and 'scanhead' are often used interchangeably to refer to the same component of the ultrasound machine. Probes consist of multiple components and are available in different shapes and sizes depending on the sonographer's needs.

See also Handheld Ultrasound, Ultrasound System Performance, Omnidirectional, Probe Cleaning, and Multi-frequency Probe,
Ultrasound Accessories and Supplies
Common ultrasound supplies that are often used in conjunction with ultrasound imaging:
Ultrasound Gel:
A water-based gel used as a coupling agent between the transducer and the patient's skin. It helps eliminate air pockets and ensures good sound wave transmission.
Probe Covers:
Disposable covers designed to maintain hygiene and prevent cross-contamination. These covers are placed over the transducer before each examination.
Cleaning Wipes:
Alcohol-based or disinfectant wipes used for cleaning and disinfecting the transducer and other equipment surfaces. Specific cleaning solutions are recommended by the ultrasound equipment manufacturer for thorough cleaning of transducers.
Gel Warmers:
Devices used to warm ultrasound gel, providing patient comfort during the examination.
Needle Guides:
Attachments or brackets that assist in accurate needle placement during ultrasound-guided procedures such as biopsies or injections.
Positioning Aids:
Cushions, wedges, or straps designed to help position patients correctly and comfortably during ultrasound exams.

Common ultrasound accessories that are often used in conjunction with ultrasound imaging:
Transducer Storage Rack:
A dedicated rack or holder to store transducers safely when not in use, helping to prevent damage.
Storage and Archiving Solutions:
External hard drives, network storage, or cloud-based systems for long-term storage and backup of ultrasound images and reports. Possibly specialized printers that produce hard copies of ultrasound images for immediate documentation and patient records.
Power Supply and Transducer Cable Extenders:
Extension cables used to increase the length of transducer cables for more flexibility during examinations. Adequate power sources or uninterrupted power supply (UPS) to ensure continuous operation of the ultrasound machine during power outages or fluctuations.
Reporting Templates and Software:
Customizable reporting templates and software solutions that facilitate efficient and standardized reporting of ultrasound findings.
Phantom Devices:
Artificial tissue-like structures or phantoms used for training, calibration, and quality assurance purposes to evaluate image quality and system performance.

Consult with ultrasound equipment vendors or professionals in the field to determine the specific accessories and supplies that best suit your imaging needs and specialty. See also Equipment Preparation, Environmental Protection, Portable Ultrasound Machine, Ultrasound Technology, Ultrasound System Performance and Sonographer.
Environmental Protection
Environmental protection in ultrasound imaging involves adopting practices and technologies that minimize the environmental impact associated with the use of ultrasound equipment and disposables.

Here are some key considerations:
Energy Efficiency:
Opt for energy-efficient ultrasound machines and equipment that are designed to minimize energy consumption. This helps reduce the overall environmental impact associated with power usage.
Digitalization and Paper Reduction:
Embrace digital imaging and archiving systems to reduce reliance on paper. Storing images and reports electronically minimizes paper consumption, printing supplies, and physical storage space.
Waste Management:
Implement proper waste management practices for ultrasound-related disposables, such as ultrasound gel bottles, probe covers, and cleaning materials. Follow local regulations for the disposal of medical waste and prioritize recycling and responsible disposal methods.
Equipment Lifespan and Disposal:
Choose ultrasound equipment known for its durability and longevity. Maximizing the lifespan of equipment reduces the frequency of replacements, minimizing electronic waste generation. When disposing of old equipment, ensure proper recycling and disposal in accordance with local regulations.
Education and Awareness:
Promote education and awareness among ultrasound professionals about environmentally conscious practices. Encourage staff to adopt energy-saving habits, such as turning off equipment when not in use, and emphasize the importance of responsible waste management. Develop standardized and optimized examination protocols to minimize the duration and number of ultrasound scans required per patient. This helps reduce the energy consumption associated with prolonged imaging sessions and decreases the overall environmental impact.

By focusing on energy efficiency, digitalization, waste management, equipment lifespan, and education, healthcare facilities can make significant strides towards reducing their carbon footprint and the environmental impact of ultrasound imaging practices.

See also Ultrasound System Performance, Equipment Preparation, Ultrasound Accessories and Supplies and Sonographer.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]