Medical Ultrasound Imaging
Thursday, 9 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Temporal Peak Intensity' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Temporal Peak Intensity' found in 3 articles
1
term [
] - 2 definitions [
]
Result Pages :
Temporal Peak Intensity
(ITP) The temporal (instantaneous) peak intensity is the maximum intensity during the ultrasound pulse.
The formula is: P2/rc
P is the instantaneous acoustic pressure, r is the density of the medium and c is the speed of sound in the medium.

See also Temporal Average Intensity (Time Average Intensity).
Piezoelectric Crystal
A piezoelectric crystal changes the physical dimensions when subjected to an electric field. When deformed by external pressure, an electric field is created across the crystal. Piezoelectric ceramic and crystals are used in ultrasound transducers to transmit and receive ultrasound waves.
The piezoelectric crystal in ultrasound transducers has electrodes attached to its front and back for the application and detection of electrical charges. The crystal consists of numerous dipoles, and in the normal state, the individual dipoles have an oblique orientation with no net surface charge.
In ultrasound physics, an electric field applied across the crystal will realign the dipoles and results in compression or expansion of the crystal, depending on the direction of the electric field. For the transmission of a short ultrasound pulse, a voltage spike of very short duration is applied, causing the crystal to initially contract and then vibrate for a short time with its resonant frequency.

See also Composite Array, Transducer Pulse Control, and Temporal Peak Intensity.
Piezoelectric Effect
Piezo means pressure, so piezoelectric means that pressure is generated when electrical energy is applied to a quartz crystal. When electrical energy is applied to the face of the crystal, the shape of the crystal changes as a function of the polarity of the applied electrical energy. As the crystal expands and contracts it produces compressions and rarefactions, and creates sound waves. When this material is struck by sound waves it creates electrical currents.
Thus, a piezoelectric crystal can produce a pulse of mechanical energy (pressure pulse) by electrically exciting the crystal (transmitter), and they can produce a pulse of electrical energy by mechanically exciting the crystal (receiver). This ultrasound physics principle is called the piezoelectric effect (pressure electricity), which was discovered by Pierre and Jacques Curie in 1880, and is used to generate ultrasound waves. Instead of quartz crystals, piezoelectric ceramics such as barium titanate or lead zirconate titanate are also used, which are crystalline materials with similar piezoelectric properties.

See also Temporal Peak Intensity.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]