Medical Ultrasound Imaging
Saturday, 27 April 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Energy' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Energy' found in 53 articles
1
term [
] - 52 definitions [
]
Result Pages :
Backscatter Energy
The backscatter energy is the portion of the incident acoustic power scattered back toward the transducer.
Environmental Protection
Environmental protection in ultrasound imaging involves adopting practices and technologies that minimize the environmental impact associated with the use of ultrasound equipment and disposables.

Here are some key considerations:
Energy Efficiency:
Opt for energy-efficient ultrasound machines and equipment that are designed to minimize energy consumption. This helps reduce the overall environmental impact associated with power usage.
Digitalization and Paper Reduction:
Embrace digital imaging and archiving systems to reduce reliance on paper. Storing images and reports electronically minimizes paper consumption, printing supplies, and physical storage space.
Waste Management:
Implement proper waste management practices for ultrasound-related disposables, such as ultrasound gel bottles, probe covers, and cleaning materials. Follow local regulations for the disposal of medical waste and prioritize recycling and responsible disposal methods.
Equipment Lifespan and Disposal:
Choose ultrasound equipment known for its durability and longevity. Maximizing the lifespan of equipment reduces the frequency of replacements, minimizing electronic waste generation. When disposing of old equipment, ensure proper recycling and disposal in accordance with local regulations.
Education and Awareness:
Promote education and awareness among ultrasound professionals about environmentally conscious practices. Encourage staff to adopt energy-saving habits, such as turning off equipment when not in use, and emphasize the importance of responsible waste management. Develop standardized and optimized examination protocols to minimize the duration and number of ultrasound scans required per patient. This helps reduce the energy consumption associated with prolonged imaging sessions and decreases the overall environmental impact.

By focusing on energy efficiency, digitalization, waste management, equipment lifespan, and education, healthcare facilities can make significant strides towards reducing their carbon footprint and the environmental impact of ultrasound imaging practices.

See also Ultrasound System Performance, Equipment Preparation, Ultrasound Accessories and Supplies and Sonographer.
Ultrasound Safety
The main advantage of ultrasound is that certain structures can be observed without using radiation. However, ultrasound is energy and there are ultrasound safety regulations, because two bioeffects of ultrasound are heat and cavitation. Ultrasound is a mechanical energy in which a pressure wave travels through tissue. Reflection and scattering back to the transducer are used to form the image. As sound energy is transmitted through the tissue, some energy is reflected and some power is absorbed.
Possible physical effects with ultrasound:
Thermal effects of ultrasound, because tissues or water absorb the ultrasound energy with increase in temperature.
Cavitation is the formation, growth, and dynamic behavior of gas bubbles (e.g. microbubbles used as contrast agents) at high negative pressure. This dissolved gases come out of solution due to local heat caused by sound energy. This has been determined harmful at the level of the medical usage.
Mechanical effects of ultrasound include ultrasound radiation force and acoustic streaming.

The ultrasound safety is based on two indices, the mechanical index (MI) and the thermal index (TI). The WFUMB guidelines state that ultrasound that produces temperature rises of less than 1.5°C may be used without reservation. They also state that ultrasonic exposure causing temperature rises of greater than 4°C for over 5 min should be considered potentially hazardous. This leaves a wide range of temperature increases which are within the capability of diagnostic ultrasound equipment to produce and for which no time limits are recommended. However, it has not been determined that medical ultrasound causes any adverse reaction or deleterious effect.
The American Institute of Ultrasound in Medicine states that as of 1982, no independently confirmed significant biologic effects had been observed in mammalian tissue below (medical usage) 100mW/cm2.

See also Ultrasound Regulations and Ultrasound Radiation Force.
Attenuation
Attenuation is the reduction of power, for example due to the passage through a medium or electrical component. In ultrasound imaging, attenuation means the decrease in amplitude and intensity as a sound wave travels through a medium. In ultrasound attenuation is often characterized as the half-value layer, or the half-power distance. These terms refer to the distance that ultrasound will travel in a particular tissue before its energy is attenuated to half its original value.

Attenuation originates through:
divergence of the wavefront;
absorption of wave energy;
elastic reflection of wave energy;
elastic scattering of wave energy.

A thick muscled chest wall will offer a significant obstacle to the transmission of ultrasound. Non-muscle tissue such as fat does not attenuate acoustic energy as much. The half-value layer for bone is still less than muscle, that's why bone is such a barrier to ultrasound.

See also Attenuation Coefficient, and Derated Quantity.
Lithotripsy
(ESWL) Extracorporeal shock wave lithotripsy is a special use of kidney ultrasound, where high intensity focused ultrasound pulses are used to break up calcified stones in the kidney, bladder, or urethra. Pulses of sonic waves pulverize dense renal stones, which are then more easily passed through the ureter and out of the body in the urine. The ultrasound energy at high acoustic power levels is focused to a point exactly on the stone requiring an ultrasound scanning gel for maximum acoustic transmission.
Air bubbles in the ultrasound couplant, regardless of their size, degrade the performance of Lithotripsy and have the following effect:
Air bubbles smaller that 1/4 wavelength cause scattering of the sound waves as omni directional scatterers and less acoustic energy reaches the focal point. The result is less acoustic power at the focal point to disintegrate the kidney stone.
Air bubbles larger than 1/4 wavelength act as reflectors and deflects the acoustic energy off in a different direction. These results in less acoustic energy at the focal point.
Microbubbles dispersed throughout the ultrasound couplant layer change the average acoustic impedance of the gel layer (which reduces the total transmitted energy) and, due to refraction, change the focal point.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]