Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Ultrasound Regulations' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Ultrasound Regulations' found in 9 articles
1
term [
] - 5 definitions [
] - 3 booleans [
]
Result Pages :
Ultrasound Regulations
Regulations governing the output of diagnostic ultrasound have been largely set by the USA's Food and Drug Administration (FDA), although the International Electrotechnical Commission (IEC) is currently in the process of setting internationally agreed standards.
The relevant national societies for ultrasound users (e.g. American Institute of Ultrasound in Medicine (AIUM), British Medical Ultrasound Society (BMUS)) usually have safety committees who offer advice on the safe use of ultrasound. In 1992, the AIUM, in conjunction with the National Electrical Manufacturers Association (NEMA) developed the Output Display Standard (ODS), including the thermal index and mechanical index which have been incorporated in the FDA's new regulations.
Within Europe, the Federation of Societies of Ultrasound in Medicine and Biology (EFSUMB) also addresses safety and has produced safety guidelines (through the European Committee for Ultrasound Radiation Safety). The World Federation (WFUMB) held safety symposia in 1991 (on thermal issues) and 1996 (thermal and non-thermal issues), at which recommendations were proffered.
The FDA ultrasound safety regulations from 1993 combine an overall limit of spatial peak time averaged intensity (I-SPTA) of 720 mW/cm2 for all equipment. A system of output displays allows users to employ effective and judicious levels of ultrasound appropriate to the examination. The output display is based on two indices, the mechanical index (MI) and the thermal index (TI).

See also ALARA Principle, and Radiological Society of North America.
Absorbed Dose
In physics, the absorbed dose is the ultrasonic power absorbed per unit of mass of an object, and is measured in watts per kilogram (W/kg). The absorption increases with ultrasound intensity and frequency.
The thermal index describes the potential for heating of the patient's tissue due to the application of energy.

See also Thermal Effect, Ultrasound Safety, Ultrasound Regulations.
Breast Ultrasound
Breast ultrasound (sonography or ultrasonography) it is an important tool in the characterization of breast lesions, detected with mammography or clinical breast examination. However, a breast sonogram is not approved by the U.S. Food and Drug Administration (FDA) as a screening tool for breast cancer and is used additional to a mammogram.
Ultrasound is useful in guiding needles for fine needle aspiration and core biopsies. Breast ultrasound has optimal contrast resolution, but it lacks the spatial resolution of conventional mammography and cannot provide as much detail as a mammogram image. In addition, ultrasound is unable to show tiny calcium deposits (microcalcifications) that are often early indications of breast cancer.

See also Biopsy, Interventional Ultrasound, Ultrasound Safety, Side Effect and Ultrasound Regulations.
Coded Excitation
Increasing the frequency of the transmitted power improves the image quality of ultrasound, but the improvement in resolution results in a decreased signal to noise ratio (SNR). Higher acoustic power levels can prevent the loss in SNR, but among other reasons, ultrasound regulations limit this to avoid heating or cavitation.
Coded excitation increase the signal to noise ratio without the loss of resolution by using coded waveforms. Coded excitation allows transmitting a long wide-band pulse with more acoustic power and high penetration of the sound beam.
Mechanical Index
(MI) The mechanical index is an estimate of the maximum amplitude of the pressure pulse in tissue. It is an indicator of the likelihood of mechanical bioeffects (streaming and cavitation). The mechanical index of the ultrasound beam is the amount of negative acoustic pressure within a ultrasonic field and is used to modulate the output signature of US contrast agents and to incite different microbubble responses.
The mechanical index is defined as the peak rarefactional pressure (negative pressure) divided by the square root of the ultrasound frequency.
The FDA ultrasound regulations allow a mechanical index of up to 1.9 to be used for all applications except ophthalmic (maximum 0.23). The used range varies from 0.05 to 1.9.
At low acoustic power, the acoustic response is considered as linear. At a low MI (less than 0.2), the microbubbles undergo oscillation with compression and rarefaction that are equal in amplitude and no special contrast enhanced signal is created. Microbubbles act as strong scattering objects due to the difference in impedance between air and liquid, and the acoustic response is optimized at the resonant frequency of a microbubble.
At higher acoustic power (MI between 0.2-0.5), nonlinear oscillation occurs preferentially with the bubbles undergoing rarefaction that is greater than compression. Ultrasound waves are created at harmonics of the delivered frequency. The harmonic response frequencies are different from that of the incident wave (fundamental frequency) with subharmonics (half of the fundamental frequency), harmonics (including the second harmonic response at twice the fundamental frequency), and ultra-harmonics obtained at 1.5 or 2.5 times the fundamental frequency. These contrast enhanced ultrasound signals are microbubble-specific.
At high acoustic power (MI greater than 0.5), microbubble destruction begins with emission of high intensity transient signals very rich in nonlinear components. Intermittent imaging becomes needed to allow the capillaries to be refilled with fresh microbubbles. Microbubble destruction occurs to some degree at all mechanical indices. A mechanical index from 0.8 to 1.9 creates high microbubble destruction. The output signal is unique to the contrast agent.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]