Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Rarefactional Pressure' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Rarefactional Pressure' found in 4 articles
1
term [
] - 3 definitions [
]
Result Pages :
Rarefactional Pressure
The rarefactional pressure is the amplitude of a negative instantaneous sound pressure in an ultrasound beam. Rarefaction is the reduction in pressure of the medium during the acoustic cycle.

See also Mechanical Index.
Mechanical Index
(MI) The mechanical index is an estimate of the maximum amplitude of the pressure pulse in tissue. It is an indicator of the likelihood of mechanical bioeffects (streaming and cavitation). The mechanical index of the ultrasound beam is the amount of negative acoustic pressure within a ultrasonic field and is used to modulate the output signature of US contrast agents and to incite different microbubble responses.
The mechanical index is defined as the peak rarefactional pressure (negative pressure) divided by the square root of the ultrasound frequency.
The FDA ultrasound regulations allow a mechanical index of up to 1.9 to be used for all applications except ophthalmic (maximum 0.23). The used range varies from 0.05 to 1.9.
At low acoustic power, the acoustic response is considered as linear. At a low MI (less than 0.2), the microbubbles undergo oscillation with compression and rarefaction that are equal in amplitude and no special contrast enhanced signal is created. Microbubbles act as strong scattering objects due to the difference in impedance between air and liquid, and the acoustic response is optimized at the resonant frequency of a microbubble.
At higher acoustic power (MI between 0.2-0.5), nonlinear oscillation occurs preferentially with the bubbles undergoing rarefaction that is greater than compression. Ultrasound waves are created at harmonics of the delivered frequency. The harmonic response frequencies are different from that of the incident wave (fundamental frequency) with subharmonics (half of the fundamental frequency), harmonics (including the second harmonic response at twice the fundamental frequency), and ultra-harmonics obtained at 1.5 or 2.5 times the fundamental frequency. These contrast enhanced ultrasound signals are microbubble-specific.
At high acoustic power (MI greater than 0.5), microbubble destruction begins with emission of high intensity transient signals very rich in nonlinear components. Intermittent imaging becomes needed to allow the capillaries to be refilled with fresh microbubbles. Microbubble destruction occurs to some degree at all mechanical indices. A mechanical index from 0.8 to 1.9 creates high microbubble destruction. The output signal is unique to the contrast agent.
Pressure
Pressure is the force per unit area applied on a surface in a direction perpendicular to that surface.
Pressure can also be described as a form of potential energy in a fluid. The maximum pressure of the fluid medium obtained during propagation of an ultrasonic pulse.
The negative peak pressure is the peak rarefaction pressure attained during the negative portion of a propagating ultrasound pulse in a medium such as tissue.
Sound pressure can be measured using a microphone in air and a hydrophone in water. The SI unit for sound pressure is the Pascal.
Blood pressure is the pressure exerted by the blood on the walls of the blood vessels.

See also Rarefactional Pressure, Low Intensity Pulsed Ultrasound, and Projector.
Ultrasound Physics
Ultrasound physics is based on the fact that periodic motion emitted of a vibrating object causes pressure waves. Ultrasonic waves are made of high pressure and low pressure (rarefactional pressure) pulses traveling through a medium.

Properties of sound waves:

The speed of ultrasound depends on the mass and spacing of the tissue molecules and the attracting force between the particles of the medium. Ultrasonic waves travels faster in dense materials and slower in compressible materials. Ultrasound is reflected at interfaces between tissues of different acoustic impedance e.g., soft tissue - air, bone - air, or soft tissue - bone.
The sound waves are produced and received by the piezoelectric crystal of the transducer. The fast Fourier transformation converts the signal into a gray scale ultrasound picture.

The ultrasonic transmission and absorption is dependend on:
refraction.

See also Sonographic Features, Doppler Effect and Thermal Effect.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]