Medical Ultrasound Imaging
Sunday, 19 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Sonographer' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Sonographer' found in 20 articles
1
term [
] - 19 definitions [
]
Result Pages :
Environmental Protection
Environmental protection in ultrasound imaging involves adopting practices and technologies that minimize the environmental impact associated with the use of ultrasound equipment and disposables.

Here are some key considerations:
Energy Efficiency:
Opt for energy-efficient ultrasound machines and equipment that are designed to minimize energy consumption. This helps reduce the overall environmental impact associated with power usage.
Digitalization and Paper Reduction:
Embrace digital imaging and archiving systems to reduce reliance on paper. Storing images and reports electronically minimizes paper consumption, printing supplies, and physical storage space.
Waste Management:
Implement proper waste management practices for ultrasound-related disposables, such as ultrasound gel bottles, probe covers, and cleaning materials. Follow local regulations for the disposal of medical waste and prioritize recycling and responsible disposal methods.
Equipment Lifespan and Disposal:
Choose ultrasound equipment known for its durability and longevity. Maximizing the lifespan of equipment reduces the frequency of replacements, minimizing electronic waste generation. When disposing of old equipment, ensure proper recycling and disposal in accordance with local regulations.
Education and Awareness:
Promote education and awareness among ultrasound professionals about environmentally conscious practices. Encourage staff to adopt energy-saving habits, such as turning off equipment when not in use, and emphasize the importance of responsible waste management. Develop standardized and optimized examination protocols to minimize the duration and number of ultrasound scans required per patient. This helps reduce the energy consumption associated with prolonged imaging sessions and decreases the overall environmental impact.

By focusing on energy efficiency, digitalization, waste management, equipment lifespan, and education, healthcare facilities can make significant strides towards reducing their carbon footprint and the environmental impact of ultrasound imaging practices.

See also Ultrasound System Performance, Equipment Preparation, Ultrasound Accessories and Supplies and Sonographer.
Handheld Ultrasound
Handheld ultrasound systems are portable devices for smartphone or tablet and are increasingly common in emergency, intensive care and veterinary medicine, but also in the pocket of the stationary doctor. This type of ultrasound machine enables immediate diagnoses directly on site (handheld point-of-care-ultrasound / HPOCUS) and quickly provide information regarding the patient's further care. Handheld ultrasound machines fit into a single-use plastic cover and can be easily disinfected, making them particularly useful in infectious environments.
The most striking advantage of handheld POCUS devices is the small footprint. The design is very compact, lightweight (approx. 200 g/0,44 lbs. - 500 g/1,1 lbs) and flexible. Due to this compactness and the necessary technical compression, the quality of the imaging is still limited compared to 'high-end devices', but sufficient to the extent that handheld ultrasound devices are already successfully used in many medical disciplines.
Depending on the model, handheld ultrasound systems run on Android, iOS, Windows or proprietary operating systems. They are connected to the end device via USB cable or wirelessly via Bluetooth or WiFi. The respective end device is used as an ultrasound monitor to display the ultrasound images. The associated app is operated via touchscreen, although some devices have a few buttons, e.g. for recording ultrasound images or freeze images. The images can be stored and managed on the end device itself, the inserted memory card or in the cloud. Theoretically, also a private smartphone can be connected, but this can lead to complications with reimbursement.
See also Portable Ultrasound Machine, Ultrasound Technology, Environmental Protection, Ultrasound Accessories and Supplies and Sonographer.
Injection Rate
Ultrasound contrast agents (USCAs) improve the sensitivity of various ultrasound applications. They usually stay within the vascular space and can be injected several times. Nevertheless the contrast enhancement is limited caused by physiologic clearance and bubble destruction.

Different injection techniques to improve the imaging:
Bolus injection generally results in a more or less prolonged blooming phase and a relatively short enhancing period of approximately 2- to 3 minutes.
Slow injection provides markedly prolonged enhancement by minimizing over-contrast artifacts.
Continuous perfusion achieves stable and uniform enhancement, lasting until the infusion is stopped.

Continuous infusion yield a steady-state concentration of the USCAs, greater examination time with optimal enhancement, avoid bloom and possibly other artifacts. Continuous infusion also allows the sonographer to optimize the effective dose individually during the examination.

See also Power Modulation.
Probe
In the field of medical ultrasound imaging, the term 'probe' specifically refers to the ultrasound transducer and represent the handheld device that emits and receives ultrasound waves during an examination.
The probe encompasses various components such as the elements, backing material, electrodes, matching layer, and protective face that are responsible for both emitting and receiving the sound waves. Aperture, known also as the footprint, is the part of the probe that is in contact with the body. When the emitted sound waves encounter body tissues, they generate reflections that are received by the probe, which then generates a corresponding signal. In most cases, the probe emits ultrasound waves for only about 10% of the time and receives them for the remaining 90%.
Probes are available in different shapes and sizes to accommodate various scanning situations. The footprint is linked to the arrangement of the piezoelectric crystals and comes in different shapes and sizes e.g. linear array transducer//convex transducer. The transducer plays a huge role in image quality and is one of the most expensive parts of the ultrasound machine. Mechanical probes steer the ultrasound beam driven by a motor and are capable of producing high-quality images, but they are prone to wear and tear. Mechanical probes have been mostly replaced by electronic multi-element transducers, but mechanical 3D probes still remain for abdominal and Ob-Gyn applications.
In summary, the terms 'ultrasound transducer,' 'probe,' and 'scanhead' are often used interchangeably to refer to the same component of the ultrasound machine. Probes consist of multiple components and are available in different shapes and sizes depending on the sonographer's needs.

See also Handheld Ultrasound, Ultrasound System Performance, Omnidirectional, Probe Cleaning, and Multi-frequency Probe,
Reject
Reject is a time gain compensation control that allows the sonographer to reduce the returning signal from more shallow structures in the body.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]