Medical Ultrasound Imaging
Sunday, 19 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Target Strength' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Target Strength' found in 4 articles
1
term [
] - 2 definitions [
] - 1 boolean [
]
Result Pages :
Target Strength
The target strength is a measure of the percentage of the acoustic energy hitting the target that is reflected back to the transducer.
Reflection
Reflection of the sound beam occurs when it hits a boundary between materials having different acoustic impedance. The reflection (echo) is the portion of a sound that is returned from the boundary. The reflection time (the time taken for the wave to return to the probe) can be used to determine the depth of the object.
The reflection within the body produces the ultrasound image, but should be minimized at an ultrasound couplant to skin boundary where the couplant acts as an acoustic window through which the image is seen. The amount of sound waves, which are reflected back at the interface between two tissues is depend on the angle of incidence and the difference between the acoustic impedance values of the two tissues.
If the difference is great, a large part of the sound waves will be reflected back. If too much sound is reflected back and not enough waves are remaining to be able to penetrate the tissue, the imaging will be poor.
If the difference is small, a small amount will be reflected back. Enough sound signal remains to continue with ultrasound imaging.
If the ultrasound beam meets a rough surface or small object, the beam is scattered in all directions and only a small amount will be received by the probe.

See also False Distance Artifact, Target Strength, and Snells Law.
Reflector
The reflector is a stationary plate component of a flowprobe used in Doppler ultrasound. Each transducer alternately emits an ultrasound beam which is reflected from this reflector to the receiving transducer. The fixed distance of the reflective pathway is critical to the measurement of the ultrasonic transit time and the accurate measurement of volume flow.

See also Target Strength.
Medical Imaging
The definition of imaging is the visual representation of an object. Medical imaging is a broad term that encompasses various imaging modalities and techniques used in the field of medicine to visualize and study the body's anatomy and physiology. It includes both diagnostic and non-diagnostic imaging procedures, where diagnostic imaging specifically refers to the subset of medical imaging techniques that are primarily focused on diagnosing diseases or conditions. Medical imaging techniques are employed to obtain images or visual representations of the internal organs, tissues, and structures, aiding in the diagnosis, treatment, and monitoring of medical conditions.
The field of medical imaging has significantly evolved since the discovery of X-rays by Konrad Roentgen in 1896. Initially, radiological imaging involved focusing X-rays on the body and capturing the images on a single piece of film within a specialized cassette. Subsequent advancements introduced the use of fluorescent screens and special glasses for real-time visualization of X-ray images.
A significant breakthrough came with the application of contrast agents, enhancing image contrast and improving organ visualization. In the 1950s, nuclear medicine studies utilizing gamma cameras demonstrated the uptake of low-level radioactive chemicals in organs, enabling the observation of biological processes in vivo. Currently, positron emission tomography (PET) and single photon emission computed tomography (SPECT) technologies play pivotal roles in clinical research and the diagnosis of biochemical and physiological processes. Additionally, the advent of the x-ray image intensifier in 1955 facilitated the capture and display of x-ray movies.
In the 1960s, diagnostic imaging incorporated the principles of sonar, using ultrasonic waves generated by a quartz crystal. These waves, reflecting at the interfaces between different tissues, were received by ultrasound machines and translated into images through computer algorithms and reconstruction software. Ultrasound (ultrasonography) has become an indispensable diagnostic tool across various medical specialties, with immense potential for further advancements such as targeted contrast imaging, real-time 3D or 4D ultrasound, and molecular imaging. The first use of ultrasound contrast agents (USCA) dates back to 1968.
Digital imaging techniques were introduced in the 1970s, revolutionizing conventional fluoroscopic image intensifiers. Godfrey Hounsfield's pioneering work led to the development of the first computed tomography (CT) scanner. Digital images are now electronic snapshots represented as grids of dots or pixels. X-ray CT brought about a breakthrough in medical imaging by providing cross-sectional images of the human body with high contrast between different types of soft tissue. These advancements were made possible by analog-to-digital converters and computers. The introduction of multislice spiral CT technology dramatically expanded the clinical applications of CT scans.
The first magnetic resonance imaging (MRI) devices were tested on clinical patients in 1980. With technological improvements, such as higher field strength, more open MRI magnets, faster gradient systems, and novel data-acquisition techniques, MRI has emerged as a real-time interactive imaging modality capable of providing detailed structural and functional information of the body.
Today, imaging in medicine offers a wide range of modalities, including:
X-ray projection imaging;
Fluoroscopy;
Computed tomography (CT / CAT);
Single photon emission computed tomography (SPECT);
Positron emission tomography (PET);
Mammography.

These imaging modalities have become integral components of modern healthcare. With the rapid advancement of digital imaging, efficient management has become important, leading to the expansion of radiology information systems (RIS) and the adoption of Picture Archiving and Communication Systems (PACS) for digital image archiving. In telemedicine, real-time transmission of all medical image modalities from MRI to X-ray, CT and ultrasound has become the standard. The field of medical imaging continues to evolve, promising further innovations and advancements in the future, ultimately contributing to improved patient care and diagnostics.

See also History of Ultrasound Contrast Agents, and History of Ultrasound.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]