Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Transvaginal Sonography' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Transvaginal Sonography' found in 7 articles
1
term [
] - 3 definitions [
] - 3 booleans [
]
Result Pages :
Transvaginal Sonography
(TVS) The transvaginal sonography (transvaginal echography or endovaginal ultrasound), uses a small vaginal transducer (5-7.5 MHz) that is inserted into the vagina to depict the inner female organs (uterus, ovaries, vessels). As a general rule, ultrasound works better when the probe is close to the area being examined. Compared with a sonogram through the abdominal wall, the transvaginal technique produces a sharper image, not only because of the close proximity to the uterus, but also because the better signal to noise ratio of the used transducer.

Indications:
detection and delineation of pelvic masses;
ectopic pregnancy;
ovarian cysts or tumors;
pelvic inflammatory disease;
bladder and rectal tumors.

The advantage of transvaginal sonography is being able to get very close to the structures of the pelvis, and thus get better images and a more reliable diagnosis.

See also Pelvic Ultrasound, Hysterosalpingo Contrast Sonography.
Hysterosalpingo Contrast Sonography
(HyCoSy) Hysterosalpingo contrast sonography is used for evaluation of fallopian tube patency in patients with fertility problems who underwent transvaginal sonography. HyCoSy compared to more invasive techniques such as chromo-laparoscopy is rapidly becoming the screening test of choice to determine tubal patency.
Any body cavity that can be accessed can, in principle, be injected with vascular contrast. The contrast agent is instilled into the uterine cavity via a small Foley type catheter and, using transvaginal echography, the passage of the echogenic contrast along the tubes and into the adnexal peritoneum is tracked.
Hysterosalpingo contrast sonography does not offer the same anatomical and false negative results, e.g., because of tubal spasm, are possible so conventional X-ray salpingography is needed when tubal surgery is an option.

See also Endocavitary Echography, Transvaginal Sonography.
Obstetric and Gynecologic Ultrasound
Gynecologic ultrasound and obstetric ultrasound are two distinct applications of ultrasound imaging that serve different purposes in the field of women's health. While both involve the use of ultrasound technology to examine the pelvic region, they have different focuses and objectives.

Gynecologic [gynaecologic, Brit.] ultrasound primarily concentrates on the evaluation of the female reproductive organs, including the uterus, ovaries, fallopian tubes, and surrounding structures. It is commonly performed for various gynecological concerns, such as abnormal bleeding, pelvic pain, infertility investigations, and monitoring of reproductive disorders. It can identify signs of inflammation, the presence of free fluid, cysts, and tumors. This non-invasive technique aids in diagnosing and monitoring gynecological pathologies, facilitating early intervention and appropriate treatment. Typically, a transabdominal sonogram is performed with a full bladder to provide an initial assessment. However, if the pelvic ultrasound reveals any abnormalities or fails to provide a clear image of the organs, a more detailed evaluation can be achieved through a transvaginal sonography. This approach allows for improved visualization of the uterus and ovaries by placing the ultrasound probe inside the vagina.

Obstetric ultrasound, also known as prenatal, fetal or pregnancy ultrasound, is the branch of medical imaging that focuses on the use of ultrasound technology to assess the health and development of a fetus during pregnancy. Women with uncomplicated pregnancies commonly undergo an ultrasound examination between the 16th and 20th week of gestation. This routine assessment, performed with a real-time scanner, serves to determine accurate gestational age, monitor fetal size, and assess overall growth. The middle of the pregnancy trimester provides a crucial window for detecting many abnormalities of fetal anatomy. Advanced imaging techniques enable healthcare professionals to identify potential structural issues. Early detection of these abnormalities allows for timely intervention, counseling, and the implementation of appropriate management strategies.
See also Pregnancy Ultrasound, Pelvic Ultrasound, Hysterosalpingo Contrast Sonography and Vaginal Probe.
Vaginal Transducer
A vaginal transducer is a small ultrasound probe that is inserted directly into the vagina. The vaginal transducer is used in gynecological ultrasound scans and has a long and slender shape to fit into the vagina. A cover is used to ensure sterility, and the transducer is lubricated with a water-soluble gel.

See also Transvaginal Sonography.
Microconvex Probe
The array of elements of microconvex probe is curved with a certain radius. Microconvex probes have a much smaller contact surface, which improves the coupling between the transducer and the skin surface even in complicated areas as the supraclavicular or jugular fossa. Microconvex probes, with large aperture and selection of transmission frequencies are also used in gynecological diagnostic.

See also Transvaginal Echography, Endocavitary Echography and Transrectal Ultrasonography.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]