Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Ultrasonic' p4
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Ultrasonic' found in 40 articles
4
terms [
] - 36 definitions [
]
Result Pages :
...
...
BiSphere™
[This entry is marked for removal.]

From POINT Biomedical Corp
BiSphere™ is a technology for drug delivery applications by ultrasound. BiSpheres™ consists of microparticles comprising a shell of an outer layer of a biologically compatible material and an inner layer of biodegradable polymer. The core of the microbubbles contains a filling gas, liquid, or solid for use in drug delivery or as a contrast agent for ultrasonic contrast imaging. The contrast agent particles are capable of passing through the capillary systems of a subject. The drug-loaded biSpheres™ would be administered intravenously and freely circulate throughout the body, while the drug encapsulated within would remain biologically unavailable. The drug would only be released when the biSpheres become flooded when passing through an externally directed ultrasound field.
The use of biSpheres™ to transport agents to specific sites within the body is expected to substantially increase local efficacy while decreasing systemic side effects or adverse reactions. The biSpheres™ may also serve to protect labile agents from metabolism or degradation. The noninvasive release of a protected, encapsulated agent can be controlled by ultrasound imaging to a depth of 20-30 cm from the skin surface.
The flexibility in size control in the biSphere™ technology has enabled the construction of submicron ultrasound contrast agents suitable for lymphatic imaging, with a diameter in the submicron range. This agent, while much smaller in size than CardioSphere®, is based on the BiSphere configuration: a shell within a shell enclosing a gas. The inner layer, made from a biodegradable polymer, provides the physical structure and controls the acoustic response. The outer layer functions as the biological interface. Each of these layers has been independently tailored to fulfill the specific requirements for lymphatic imaging.
Cavitation
Cavitation is any activity of highly compressible transient or stable microbubbles of gas and/or vapour, generated by ultrasonic power in the propagation medium. Cavitation can be described as inertial or non-inertial. Inertial cavitation has the most potential to damage tissue and occurs when a gas-filled cavity grows, during pressure rarefaction of the ultrasound pulse, and contracts, during the compression phase. Collapses of bubbles can generate local high temperatures and pressures. Transient cavitation can cause tissue damage.
The threshold for cavitation is high and does not occur at current levels of diagnostic ultrasound. The introduction of contrast agents leads to the formation of microbubbles that potentially provide gas nuclei for cavitation. The use of contrast agents can lower the threshold at which cavitation occurs.

Types of cavitation:
Acoustic cavitation - sound in liquid can produce bubbles or cavities containing gas or vapour.
Stable cavitation - steady microbubble oscillation due to the passage of a sound wave.
Transient cavitation - short-lived cavitation initiated by the negative pressure of the sound wave.

Class I, II, III Devices
Classification by the Food and Drug Administration of medical devices according to potential risks like e.g. ultrasonic heating. The US FDA 510k document provides guidance in the preparation of a regulatory submission to prevent hazards.
Contrast Enhanced Ultrasound
(CEUS) Contrast agents increase the reflection of ultrasonic energy, improve the signal to noise ratio and caused by that the detection of abnormal microvascular and macrovascular disorders. Contrast enhanced ultrasound is used in abdominal ultrasound (liver sonography) as well as in cerebrovascular examinations e.g., for an accurate grading of carotid stenosis. The used contrast agents are safe and well tolerated.

The quality of the enhancement depends on:
the concentration of the contrast agent;
the type of injection, flow rate;
the patient characteristics;
the microbubble quality and properties of the filling gas and the shell.

The additional use of ultrasound contrast agents (USCAs) may overcome typical limitations like poor contrast of B-mode imaging or limited sensitivity of Doppler techniques. The development of new ultrasound applications (e.g., blood flow imaging, perfusion quantification) depends also from the development of pulse sequences for bubble specific imaging. In addition, contrast enhanced ultrasound improves the monitoring of ultrasound guided interventions like RF thermal ablation.

See also Contrast Enhanced Doppler Imaging, Contrast Harmonic Imaging, Contrast Imaging Techniques and Contrast Pulse Sequencing.
Decibel
(dB) A customary logarithmic measure most commonly used (in various ways) for measuring sound. Decibel is a way to express the ratio of two sound intensities: dB=10log10I1/I2 being I1 the reference. If one sound is 1 bel (10 decibel) 'louder' than another, this means the louder sound is 10 times louder than the fainter one. A difference of 20 decibel corresponds to an increase of 10 x 10 or 100 times in intensity.
The intensity of ultrasound decreases during the propagation and is measured in db/cm.
For sound pressure (the pressure exerted by the sound waves) 0 decibel equals 20 microPascal (μPa), and for ultrasonic power 0 decibel sometimes equals 1 picoWatt.

See also dB/dt, Phon, and Logarithms.
Result Pages :
...
...
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]