Medical Ultrasound Imaging
Sunday, 19 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Acoustic Impedance' p2
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Acoustic Impedance' found in 19 articles
1
term [
] - 10 definitions [
] - 8 booleans [
]
Result Pages :
Definity®
www.definityimaging.com/newsroom/newsroom/factsheet.asp From Lantheus Medical Imaging.
Activated DEFINITY® Injectable Suspension is indicated for use in patients with suboptimal echocardiograms to opacify the left ventricular chamber and to improve the delineation of the left ventricular endocardial border. The perflutren lipid microspheres exhibit lower acoustic impedance than blood and enhance the intrinsic backscatter of blood.
Echocardiography with Definity produced more detailed images of the heart in difficult-to-image patients versus echocardiography alone, and images obtained with the contrast agent provided a more accurate assessment of segmental wall motion compared with unenhanced images.

See also Coherent Contrast Imaging.

In August 2001 DuPont Pharmaceuticals Company received FDA approval.

Drug Information and Specification
RESEARCH NAME
DMP 115, MRX 115
INDICATION -
DEVELOPMENT STAGE
APPLICATION
Intravenous
Lipids:DPPA, DPPC,MPEG5000 DPPE
CHARGE
Negative
Octafluoropropane
MICROBUBBLE SIZE
98% < 10μm
PRESENTATION
Package contains four 2mL clear glass single-use vials.
STORAGE
Refrigerate 2−8 °C
PREPARATION
Activate through Vialmix agitation
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Distribution Information
TERRITORY
DISTRIBUTOR
North America, Australia, South Asia, Middle East
• 
View NEWS results for 'Definity®' (1).Open this link in a new window.
Lithotripsy
(ESWL) Extracorporeal shock wave lithotripsy is a special use of kidney ultrasound, where high intensity focused ultrasound pulses are used to break up calcified stones in the kidney, bladder, or urethra. Pulses of sonic waves pulverize dense renal stones, which are then more easily passed through the ureter and out of the body in the urine. The ultrasound energy at high acoustic power levels is focused to a point exactly on the stone requiring an ultrasound scanning gel for maximum acoustic transmission.
Air bubbles in the ultrasound couplant, regardless of their size, degrade the performance of Lithotripsy and have the following effect:
Air bubbles smaller that 1/4 wavelength cause scattering of the sound waves as omni directional scatterers and less acoustic energy reaches the focal point. The result is less acoustic power at the focal point to disintegrate the kidney stone.
Air bubbles larger than 1/4 wavelength act as reflectors and deflects the acoustic energy off in a different direction. These results in less acoustic energy at the focal point.
Microbubbles dispersed throughout the ultrasound couplant layer change the average acoustic impedance of the gel layer (which reduces the total transmitted energy) and, due to refraction, change the focal point.
Point Scatterer
A point scatterer is a reflector with a diameter much smaller than the ultrasound wavelength. The reflection from blood is a typical example of point scattering. Red blood cells are with 7μm versus 0.44 mm wavelength at 3.5 MHz, smaller than any US wavelength. The individual cells are not only the point scatterers, ultrasound is scattered whenever there is a change in acoustic impedance, and in blood such changes are caused by variable cell concentration. These local fluctuations in cell concentration have a spatial extent that is also much smaller than the ultrasound wavelength, and they therefore act as point scatterers.
A point scatterer gives rise to spherical wavelets spreading out in all directions with the scatterer itself at the center of the sphere. The spherical wavelets from one single point scatterer are much too weak to be detected by the transducer, but constructive interference between numerous wavelets will produce backscattering of higher amplitude echoes with parallel wavefronts, also in the direction of the ultrasound transducer.

See also Rayleigh Scattering.
Ultrasound Contrast Agents
(UCA / USCA) Ultrasonography is the most commonly performed diagnostic imaging procedure. The introduction of sonographic contrast media into routine practice modifies the use of ultrasound in a variety of clinical applications. USCAs consist of microbubbles filled with air or gases and can be classified according to their pharmacokinetics. Among the blood pool agents, transpulmonary ultrasound contrast agents offer higher diagnostic potential compared to agents that cannot pass the pulmonary capillary bed after a peripheral intravenous injection. In addition to their vascular phase, some USCAs can exhibit a tissue- or organ-specific phase.
The sonogram image quality is improved either by decreasing the reflectivity of the undesired interfaces or by increasing the backscattered echoes from the desired regions.

Different types of ultrasound contrast agents:
Ultrasound contrast agents act as echo-enhancers, because of the high different acoustic impedance at the interface between gas and blood. The enhanced echo intensity is proportional to the change in acoustical impedance as the sound beam crosses from the blood to the gas in the bubbles.

The ideal qualities of an ultrasound contrast agent:
high echogenicity;
low blood solubility;
low diffusivity;
ability to pass through the pulmonary capillary bed;
lack of biological effects with repeat doses.

A typical ultrasound contrast agent consists of a thin flexible or rigid shell composed of albumin, lipid, or polymer confining a gas such as nitrogen, or a perfluorocarbon. The choice of the microbubble shell and gas has an important influence on the properties of the agent.
Current generations of microbubbles have a diameter from 1 μm to 5 μm. The success of these agents is mostly dependent on the small size and on the stability of their shell, which allows passage of the microbubbles through the pulmonary circulation. Microbubbles must be made smaller than the diameter of capillaries or they would embolize and be ineffective and perhaps even dangerous.
The reflectivity of these microbubbles is proportional to the fourth power of a particle diameter but also directly proportional to the concentration of the contrast agent particles themselves.
Ultrasound contrast agents produce unique acoustic signatures that allow to separate their signal from tissue echoes and to depict whether they are moving or stationary. This enables the detection of capillary flow and of targeted microbubbles that are retained in tissues such as normal liver.
The new generation of contrast media is characterized by prolonged persistence in the vascular bed which provides consistent enhancement of the arterial Doppler signal. Contrast agents make it also possible to perform dynamic and perfusion studies. Targeted contrast imaging agents are for example taken up by the phagocytic cell systems and thus have liver/spleen specific effects.

See also Ultrasound Contrast Agent Safety, Adverse Reaction, Tissue-Specific Ultrasound Contrast Agent, and Bubble Specific Imaging.
Ultrasound Physics
Ultrasound physics is based on the fact that periodic motion emitted of a vibrating object causes pressure waves. Ultrasonic waves are made of high pressure and low pressure (rarefactional pressure) pulses traveling through a medium.

Properties of sound waves:

The speed of ultrasound depends on the mass and spacing of the tissue molecules and the attracting force between the particles of the medium. Ultrasonic waves travels faster in dense materials and slower in compressible materials. Ultrasound is reflected at interfaces between tissues of different acoustic impedance e.g., soft tissue - air, bone - air, or soft tissue - bone.
The sound waves are produced and received by the piezoelectric crystal of the transducer. The fast Fourier transformation converts the signal into a gray scale ultrasound picture.

The ultrasonic transmission and absorption is dependend on:
refraction.

See also Sonographic Features, Doppler Effect and Thermal Effect.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]