Medical Ultrasound Imaging
Thursday, 9 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Focus' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Focus' found in 55 articles
4
terms [
] - 51 definitions [
]
Result Pages :
Focus
In contrast enhanced ultrasound, the focus is the point at which maximum bubble destruction occur.
The transmit focus is the region on the axis of an ultrasound beam where the width of the beam has a minimum value. All waves crossing the focus are in phase in relation to the transducer surface or to the electronic summing point of an electronically focused array.
Dynamic Focusing
Dynamic focusing controls the axial position of the focus of an ultrasound beam. Dynamic focusing is often managed by controlling the phase of the signals detected by a transducer array.

See also Real-Time Transducer.
High Intensity Focused Ultrasound
(HIFU / FUS) High intensity focused ultrasound is used in thermotherapy or thermoablation e.g., for the treatment of benign prostate hyperplasia or under study for the treatment of cancer.
An applied ultrasound probe (see transrectal sonography) focuses sound waves at one spot, elevating the tissue temperature to a point that the tissue destroys. Generally, lower frequencies (from 250 kHz to 2000 kHz) are used than for medical diagnostic ultrasound, but significantly higher time-averaged intensities.

See also Magnetic Resonance Guided Focused Ultrasound, Low Intensity Pulsed Ultrasound, and Lithotripsy.
Magnetic Resonance Guided Focused Ultrasound
(MRgFUS) Magnetic resonance guided focused ultrasound is a surgical procedure that uses high intensity focused ultrasound waves to destroy tissue in combination with magnetic resonance imaging (MRI), which guides the treatment.
With focused ultrasound waves uterine fibroids are heated and destroyed (ablated) inside the MRI device , allowing the physician to plan, monitor and control the treatment with temperature sensitive images while it is in progress.

See also High Intensity Focused Ultrasound, and Interventional Ultrasound.
Beamforming
The wider the ultrasound beam, the more severe the problem with volume averaging and the beam-width artifact, to avoid this, the ultrasound beam can be shaped with lenses.
Different possibilities to focus the beam:
Mechanical focusing is performed by placing an acoustic lens on the surface of the transducer or using a transducer with a concave face.
Electronic focusing uses multiple phased array (annular or linear) elements, sequentially fired to focus the beam.
Conventional multi-element transducers are electronically focused in order to minimize beam width. This transducer type can be focused electronically only along the long axis of the probe where there are multiple elements, along the short axis (elevation axis) are conventional transducers only one element wide. Electronic focusing in any axis requires multiple transducer elements arrayed along that axis. Short axis focusing of conventional multi-element transducers requires an acoustic lens which has a fixed focal length.
For operation at frequencies at or even above 10 MHz, quantization noise reduces contrast resolution. Digital beamforming gives better control over time delay quantization errors. In digital beamformers the delay accuracy is improved, thus allowing higher frequency operation. In analog beamformers, delay accuracy is in the order of 20 ns.
Phased beamformers are suitable to handle linear phased arrays and are used for sector formats such as required in cardiography to improve image quality. Beamforming in ultrasound instruments for medical imaging uses analog delay lines. The signal from each individual element is delayed in order to steer the beam in the desired direction and focuses the beam.
The receive beamformer tracks the depth and focuses the receive beam as the depth increases for each transmitted pulse. The receive aperture increase with depth. The lateral resolution is constant with depth, and decreases the sensitivity to aberrations in the imaged tissue. A requirement for dynamic control of the used elements is given. Since often a weighting function (apodization) is used for side lobe reduction, the element weights also have to be dynamically updated with depth.

See also Huygens Principle.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]