Medical Ultrasound Imaging
Wednesday, 8 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Acoustic Lens' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Acoustic Lens' found in 7 articles
1
term [
] - 5 definitions [
] - 1 boolean [
]
Result Pages :
Acoustic Lens
The acoustic lens is placed at the time the transducer is manufactured and cannot be changed. The acoustic lens is generally focused in the mid field rather than the near or far fields. The exact focal length varies with transducer frequency, but is generally in the range of 4-6 cm for a 5 MHz curved linear probe and 7-9 cm for a 3.5 MHz curved transducer.
Placing the elevation plane (z-plane) focal zone of the acoustic lens in the very near or far field would improve the beam width at precisely those depths. However, this would degrade the beam width to a much greater and unacceptable degree at all other depths.
There are some chemicals in ultrasound couplants that can degrade the acoustic lens, destroy bonding, or change the acoustic properties of the lens. Problematic chemicals include mineral oil, silicone oil, alcohol, surfactants, and fragrances. Fragrance can affect the transducer's acoustic lens or face material by absorption over time into elastomer and plastic materials, thus changing the material's weight, size, density, and acoustic impedance. Surfactants can degrade the bond between the lens and the piezoelectric elements and contribute to the accelerated degeneration of the lens.

See also Retrolenticular Afterglow.
Beamforming
The wider the ultrasound beam, the more severe the problem with volume averaging and the beam-width artifact, to avoid this, the ultrasound beam can be shaped with lenses.
Different possibilities to focus the beam:
Mechanical focusing is performed by placing an acoustic lens on the surface of the transducer or using a transducer with a concave face.
Electronic focusing uses multiple phased array (annular or linear) elements, sequentially fired to focus the beam.
Conventional multi-element transducers are electronically focused in order to minimize beam width. This transducer type can be focused electronically only along the long axis of the probe where there are multiple elements, along the short axis (elevation axis) are conventional transducers only one element wide. Electronic focusing in any axis requires multiple transducer elements arrayed along that axis. Short axis focusing of conventional multi-element transducers requires an acoustic lens which has a fixed focal length.
For operation at frequencies at or even above 10 MHz, quantization noise reduces contrast resolution. Digital beamforming gives better control over time delay quantization errors. In digital beamformers the delay accuracy is improved, thus allowing higher frequency operation. In analog beamformers, delay accuracy is in the order of 20 ns.
Phased beamformers are suitable to handle linear phased arrays and are used for sector formats such as required in cardiography to improve image quality. Beamforming in ultrasound instruments for medical imaging uses analog delay lines. The signal from each individual element is delayed in order to steer the beam in the desired direction and focuses the beam.
The receive beamformer tracks the depth and focuses the receive beam as the depth increases for each transmitted pulse. The receive aperture increase with depth. The lateral resolution is constant with depth, and decreases the sensitivity to aberrations in the imaged tissue. A requirement for dynamic control of the used elements is given. Since often a weighting function (apodization) is used for side lobe reduction, the element weights also have to be dynamically updated with depth.

See also Huygens Principle.
Linear Array Transducer
Linear array transducer elements are rectangular and arranged in a line. Linear array probes are described by the radius of width in mm. A linear array transducer can have up to 512 elements spaced over 75-120 mm. The beam produced by such a narrow element will diverge rapidly after the wave travels only a few millimeters. The smaller the face of the transducer, the more divergent is the beam. This would result in poor lateral resolution due to beam divergence and low sensitivity due to the small element size.
In order to overcome this, adjacent elements are pulsed simultaneously (typically 8 to 16; or more in wide-aperture designs). In a subgroup of x elements, the inner elements pulse delayed with respect to the outer elements. The interference of the x small divergent wavelets produces a focused beam. The delay time determines the depth of focus for the transmitted beam and can be changed during scanning.
Linear arrays are usually cheaper than sector scanners but have greater skin contact and therefore make it difficult to reach organs between ribs such as the heart. One-dimensional linear array transducers may have dynamic, electronic focusing providing a narrow ultrasound beam in the image plane. In the z-plane (elevation plane - perpendicular to the image plane) focusing may be provided by an acoustic lens with a fixed focal zone.
Rectangular or matrix transducers with unequal rows of transducer elements are two-dimensional (2D), but they are termed 1.5D, because the number of rows is much less than the number of columns. These transducers provide dynamic, electronic focusing even in the z-plane.

See also Rectangular Array Transducer.
Transducer
A transducer is a device, usually electrical or electronic, that converts one type of energy to another. Most transducers are either sensors or actuators. A transducer (also called probe) is a main part of the ultrasound machine. The transducer sends ultrasound waves into the body and receives the echoes produced by the waves when it is placed on or over the body part being imaged.
Ultrasound transducers are made from crystals with piezoelectric properties. This material vibrates at a resonant frequency, when an alternating electric current is applied. The vibration is transmitted into the tissue in short bursts. The speed of transmission within most soft tissues is 1540 m/s, producing a transit time of 6.5 ms/cm. Because the velocity of ultrasound waves is constant, the time taken for the wave to return to the transducer can be used to determine the depth of the object causing the reflection.
The waves will be reflected when they encounter a boundary between two tissues of different density (e.g. soft tissue and bone) and return to the transducer. Conversely, the crystals emit electrical currents when sound or pressure waves hit them (piezoelectric effect). The same crystals can be used to send and receive sound waves; the probe then acts as a receiver, converting mechanical energy back into an electric signal which is used to display an image. A sound absorbing substance eliminates back reflections from the probe itself, and an acoustic lens focuses the emitted sound waves. Then, the received signal gets processed by software to an image which is displayed at a monitor.
Transducer heads may contain one or more crystal elements. In multi-element probes, each crystal has its own circuit. The advantage is that the ultrasound beam can be controlled by changing the timing in which each element gets pulsed. Especially for cardiac ultrasound it is important to steer the beam.
Usually, several different transducer types are available to select the appropriate one for optimal imaging. Probes are formed in many shapes and sizes. The shape of the probe determines its field of view.
Transducers are described in megahertz (MHz) indicating their sound wave frequency. The frequency of emitted sound waves determines how deep the sound beam penetrates and the resolution of the image. Most transducers are only able to emit one frequency because the piezoelectric ceramic or crystals within it have a certain inherent frequency, but multi-frequency probes are also available.
See also Blanking Distance, Damping, Maximum Response Axis, Omnidirectional, and Huygens Principle.
Ultrasound Gel
An ultrasound (US) scanning gel has the same conductivity as the human body and is applied between the transducer and the skin surface. Air is a bad conductor of US, so this acoustic gel is used to conducts the sound beam and allows the ultrasound probe to pass smoothly over the skin.
The gel will be removed after the examination, and it will not stain skin or clothing. The basic dermatological requirement of a scanning gel is that it be free of skin irritants or sensitizers. In addition, effective preservatives with low incidence of skin reaction are required to prevent microbiological degradation of the gel. The broad range of patients imaged with ultrasound, from pregnant women and infants to the infirm or elderly dictates that the risk of skin reaction must be minimized.
The effect of small bubbles in the ultrasound couplant under the transducer is to disperse the ultrasound which results in clouding of the image. This effect is most clearly seen on anechoic regions of the image which becomes cloudy. Air bubbles, regardless of their size, degrade the performance of ultrasound in all medical applications including imaging, Lithotripsy and physical therapy.
There are some chemicals, including mineral oil, silicone oil, alcohol, surfactants, and fragrances that can degrade the acoustic lens, destroy bonding, or change the acoustic properties of the lens. The use of scanning gels or lotions in diagnostic ultrasound containing these chemicals should be avoided. In therapeutic ultrasound, ultrasound transmission gels and lotions commonly contain oils and other chemicals not intended for use with diagnostic imaging transducers.

See also Ultrasound Therapy and Ultrasound Physics.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]