Medical Ultrasound Imaging
Sunday, 19 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 Ultrasound Database 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
U.-Ul Ul-Ul Ul-Ul Ul-Ul Ul-Ul Ul-Ur
Ultrasound Safety
The main advantage of ultrasound is that certain structures can be observed without using radiation. However, ultrasound is energy and there are ultrasound safety regulations, because two bioeffects of ultrasound are heat and cavitation. Ultrasound is a mechanical energy in which a pressure wave travels through tissue. Reflection and scattering back to the transducer are used to form the image. As sound energy is transmitted through the tissue, some energy is reflected and some power is absorbed.
Possible physical effects with ultrasound:
Thermal effects of ultrasound, because tissues or water absorb the ultrasound energy with increase in temperature.
Cavitation is the formation, growth, and dynamic behavior of gas bubbles (e.g. microbubbles used as contrast agents) at high negative pressure. This dissolved gases come out of solution due to local heat caused by sound energy. This has been determined harmful at the level of the medical usage.
Mechanical effects of ultrasound include ultrasound radiation force and acoustic streaming.

The ultrasound safety is based on two indices, the mechanical index (MI) and the thermal index (TI). The WFUMB guidelines state that ultrasound that produces temperature rises of less than 1.5°C may be used without reservation. They also state that ultrasonic exposure causing temperature rises of greater than 4°C for over 5 min should be considered potentially hazardous. This leaves a wide range of temperature increases which are within the capability of diagnostic ultrasound equipment to produce and for which no time limits are recommended. However, it has not been determined that medical ultrasound causes any adverse reaction or deleterious effect.
The American Institute of Ultrasound in Medicine states that as of 1982, no independently confirmed significant biologic effects had been observed in mammalian tissue below (medical usage) 100mW/cm2.

See also Ultrasound Regulations and Ultrasound Radiation Force.
• 
View NEWS results for 'Ultrasound Safety' (13).Open this link in a new window.
• View DATABASE results for 'Ultrasound Safety' (9).Open this link in a new window.
Ultrasound System Performance
Ultrasound machines, with their various components and types, have revolutionized the field of medical imaging. These devices enable healthcare professionals to visualize internal structures, assess conditions, and guide interventions with real-time imaging capabilities. Today, medical ultrasound systems are complex signal processing machines. Assessing the performance of an ultrasound system requires understanding the relationships between the characteristics of the system, such as the point spread function, temporal resolution, and the quality of images. Image quality aspects include the detail resolution, contrast resolution and penetration. Systems with microbubble scanner modification are particularly suitable for contrast enhanced ultrasound.

Low-performance systems constitute approximately 20% of the world ultrasound market. These ultrasound machines are characterized by basic black and white imaging and are primarily used for basic OB/GYN applications and fetal development monitoring. They are often purchased by private office practitioners and small hospitals, with a unit cost below $50,000. These scanners commonly come equipped with a transvaginal probe.
Mid-performance sonography systems also hold around 20% market share. These machines are basic gray scale imaging, color and spectral Doppler and are used for routine examinations and reporting. They typically utilize a minimum number of scanheads and find applications in radiology, cardiology, and OB/GYN. The cost of these systems ranges between $50,000 and $100,000. Refurbished advanced and high-performance ultrasound machines with fewer optional features can also be found in this price range.
High-performance ultrasound systems generally provide high-resolution gray scale imaging, advanced color power and spectral Doppler capabilities. They usually include advanced measurement and analysis software, image review capabilities, and a variety of probes. These high-performance sonography devices have a market share of approximately 40% and cost between $100,000 and $150,000.
The remaining 20% of the market consists of premium or advanced performance ultrasound systems, typically sold for over $150,000. Premium performance systems offer high-resolution gray scale imaging, advanced color flow, power Doppler, and spectral Doppler, as well as features like tissue harmonic imaging, image acquisition storage, display and review capabilities, advanced automation, and more. Premium systems are equipped with a wide assortment of transducer scanheads.

In summary, ultrasound machines have diverse performance levels and corresponding price ranges, catering to various medical imaging needs. From low-performance systems with basic imaging capabilities to high-performance and premium systems with advanced features, ultrasound technology continues to advance healthcare imaging capabilities.
See also Ultrasound Physics, Handheld Ultrasound, Environmental Protection, Equipment Preparation.
• 
View NEWS results for 'Ultrasound System Performance' (13).Open this link in a new window.
• View DATABASE results for 'Ultrasound System Performance' (6).Open this link in a new window.
Ultrasound Therapy
Ultrasound therapy uses high energy sound waves to treat different diseases. Historically, the use of ultrasonic waves in therapy began before the wide use as a diagnostic medical imaging tool. Dependend on the intensity, ultrasound therapy reach from the thermal effect used in physical therapy to the destruction of tissue with lithotripsy.

Types of ultrasound treatment:
See also Thermal Index, History of Ultrasound, Interventional Ultrasound, and B-Mode Acquisition and Targeting.
• 
View NEWS results for 'Ultrasound Therapy' (22).Open this link in a new window.
• View DATABASE results for 'Ultrasound Therapy' (8).Open this link in a new window.
Urologic Ultrasound
Urologic ultrasound includes the examination of the kidneys, renal vessels, urinary tract, bladder, prostate, and scrotum.
Usual gray scale ultrasound equipment and standard probes are sufficient to examine the kidney parenchyma and renal pelvis, the urinary tract and bladder. Doppler ultrasound is a useful adjunct to kidney ultrasound. High ultrasound system performance is desirable to show the arterial system, because advanced power Doppler is significantly more sensitive to blood flow than standard color Doppler.
Transurethral sonography may be used to examine the bladder and urethra. Transrectal sonography is used to scan and treat the prostate e.g., with brachytherapy or high intensity focused ultrasound. Very small probes are used for these applications. Reflux sonography is especially used in pediatric ultrasound.

See also Ultrasound Imaging Procedures, Ultrasound Picture, Ultrasound Imaging Modes, Lithotripsy, Thermotherapy, Brachytherapy and Ultrasound Therapy.
• 
View NEWS results for 'Urologic Ultrasound' (6).Open this link in a new window.
• View DATABASE results for 'Urologic Ultrasound' (11).Open this link in a new window.
U.-UlUl-UlUl-UlUl-UlUl-UlUl-Ur
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]