Medical Ultrasound Imaging
Saturday, 27 April 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Contrast Enhanced Ultrasound' 
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Contrast Enhanced Ultrasound' found in 24 articles
1
term [
] - 14 definitions [
] - 9 booleans [
]
Result Pages :
Contrast Enhanced Ultrasound
(CEUS) Contrast agents increase the reflection of ultrasonic energy, improve the signal to noise ratio and caused by that the detection of abnormal microvascular and macrovascular disorders. Contrast enhanced ultrasound is used in abdominal ultrasound (liver sonography) as well as in cerebrovascular examinations e.g., for an accurate grading of carotid stenosis. The used contrast agents are safe and well tolerated.

The quality of the enhancement depends on:
the concentration of the contrast agent;
the type of injection, flow rate;
the patient characteristics;
the microbubble quality and properties of the filling gas and the shell.

The additional use of ultrasound contrast agents (USCAs) may overcome typical limitations like poor contrast of B-mode imaging or limited sensitivity of Doppler techniques. The development of new ultrasound applications (e.g., blood flow imaging, perfusion quantification) depends also from the development of pulse sequences for bubble specific imaging. In addition, contrast enhanced ultrasound improves the monitoring of ultrasound guided interventions like RF thermal ablation.

See also Contrast Enhanced Doppler Imaging, Contrast Harmonic Imaging, Contrast Imaging Techniques and Contrast Pulse Sequencing.
Ultrasound Technology
Ultrasound technology with its advancements is vital for delivering high-quality patient care. Innovations including high-frequency ultrasound, 3D//4D imaging, contrast enhanced ultrasound, elastography, and point-of-care ultrasound, have expanded the capabilities of ultrasound imaging and improved diagnostic accuracy.
B-Mode imaging, also known as brightness mode, is the fundamental technique in ultrasound imaging. It produces two-dimensional images based on the echoes received from tissues and organs. Understanding the principles of B-Mode imaging, such as gain adjustment, depth control, and image optimization, is crucial for obtaining diagnostically valuable images. M-Mode imaging, on the other hand, allows for the visualization of motion over time, enabling assessment of cardiac structures and function, as well as fetal heart rate.
High-frequency ultrasound refers to the use of ultrasound waves with frequencies greater than 10 MHz. This technology enables improved resolution, allowing for detailed imaging of superficial structures like skin, tendons, and small organs. High-frequency ultrasound has found applications in dermatology, ophthalmology, and musculoskeletal imaging.
Traditional 2D ultrasound has been augmented by the advent of 3D ultrasound technology. By acquiring multiple 2D images from different angles, this technique construct a volumetric representation of the imaged area. The addition of 4D ultrasound in real-time motion adds further value by capturing dynamic processes.
Doppler imaging employs the Doppler effect to evaluate blood flow within vessels and assess hemodynamics. Color Doppler assigns color to different blood flow velocities, providing a visual representation of blood flow direction and speed. Spectral Doppler displays blood flow velocities as a waveform, allowing for detailed analysis of flow patterns, resistance, and stenosis.
Contrast enhanced ultrasound employs microbubble contrast agents to enhance the visualization of blood flow and tissue perfusion. By injecting these agents intravenously, sonographers can differentiate between vascular structures and lesions. Elastography is a technique that measures tissue elasticity or stiffness. It assists in differentiating between normal and abnormal tissues, aiding in the diagnosis of various conditions such as liver fibrosis, breast lesions, and thyroid nodules.
Fusion imaging combines ultrasound with other imaging modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET). By overlaying or merging ultrasound images with those obtained from other modalities, the user can precisely locate and characterize abnormalities, guide interventions, and improve diagnostic accuracy. Fusion imaging has proven particularly useful in areas such as interventional radiology, oncology, and urology.
See also Equipment Preparation, Environmental Protection, Handheld Ultrasound, Portable Ultrasound and Ultrasound Accessories and Supplies.
Albunex
Albunex and Infoson, used mainly in cardiac evaluations, are first generation one-pass-only contrast agents and have been replaced by the new-generation contrast media. Albunex and Infoson are the same sonicated human serum albumin microbubbles. Infoson is licensed and manufactured in Europe, while Albunex was produced in the USA.
Albunex, an air-filled microbubble with a denatured albumin shell (modified from air-filled albumin microspheres prepared from sonicated 5% human serum albumin), was the first FDA-approved contrast agent, but is no longer in production.
Cardiac shunts and valve regurgitations are often evaluated with Color Doppler Imaging (CDI), which also improved with injections of Albunex, but this agent is pressure-sensitive and does not recirculate. It is effectively a one-pass-only agent, limiting its clinical efficacy.

See also First generation USCA, Echocardiography and Contrast Enhanced Ultrasound.
Drug Information and Specification
DEVELOPER
INDICATION
Contrast sonography and Doppler-echocardiography
APPLICATION
Intravenous injection
TYPE
Microbubble
SHELL - STABILIZATION
Albumin
Air
DO NOT RELY ON THE INFORMATION PROVIDED HERE, THEY ARE
NOT A SUBSTITUTE FOR THE ACCOMPANYING PACKAGE INSERT!
Bubble Destruction
Bubble destruction describes the microbubble shell rupture by ultrasound pulses. The bubble destruction increases with increasing peak negative pressure and decreasing frequency. The mechanical index is an indicator for the effectiveness of microbubble destruction. Contrast enhanced ultrasound relies on bubble rupture to detect bubbles in small vessels.

See also Negative Bolus.
Cerebrovascular Ultrasonography
Cerebrovascular ultrasonography is the best screening tool for the detection of carotid artery stenosis. Transcranial sonography is used in the evaluation of patients with suspected cerebrovascular disease, but a common problem is the attenuation of the ultrasound signal by the skull.
Contrast enhanced ultrasound play a particularly important role in the visualization of the intracranial vessels, and thus improves the accuracy of transcranial Doppler and increases the potential of this technique. The use of microbubbles is helpful for classification of stenosis and for plaque evaluation in patients with poor initial examination. Ultrasound contrast agents avoid misdiagnosing a subtotal stenosis, which is a very important clinical issue.

See also Adventitia, Intima, Periorbital Doppler, and Acoustic Window.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn

Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]