Medical Ultrasound Imaging
Monday, 20 May 2024
• Welcome to
     Medical-Ultrasound-Imaging.com!
     • Sign in / Create account
 
 'Resolution' p13
SEARCH   
A B C D E F G H I J K L M N O P Q R S T U V W Z 
Searchterm 'Resolution' found in 71 articles
5
terms [
] - 66 definitions [
]
Result Pages :
Targeted Contrast Imaging
Targeted ultrasound contrast agents provide advantages compared with usual microbubble blood pool agents. The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. Tissue-specific ultrasound contrast agents improve the image contrast resolution through differential uptake. Targeted drug delivery via contrast microbubbles is another contrast media concept and provides the potential for earlier detection and characterization of disease.
Targeted contrast imaging provides a higher sensitivity and specificity than obtained with a nontargeted contrast agent.
The detection of disease-indicative molecular signatures may allow early assessment of pathology on a molecular level.
Molecular imaging should be an efficient and less invasive technique to obtain three-dimensional localization of pathology.
Ultrasound agents typically remain within the vascular space, and therefore possible targets include molecular markers on thrombus, endothelial cells, and leukocytes. Targeted contrast agents permit noninvasive detection of thrombus, cancer, inflammation, or other sites where specific integrins or other adhesion molecules are expressed. Adhesion molecules such as monoclonal antibodies, peptides, asialoglycoproteins, or polysaccharides are incorporated into the shell of the microbubble or liposome. After injection into the bloodstream, the targeted agent accumulates via adhesion receptors at the affected site, enhancing detection with an ultrasound system.

See also Acoustically Active Lipospheres, and Tissue-Specific Ultrasound Contrast Agent.
• 
View NEWS results for 'Targeted Contrast Imaging' (1).Open this link in a new window.
Tissue-Specific Ultrasound Contrast Agent
Tissue-specific ultrasound contrast agents improve the image contrast resolution through differential uptake. The concentration of microbubble contrast agents within the vasculature, reticulo-endothelial, or lymphatic systems produces an effective passive targeting of these areas. Other contrast media concepts include targeted drug delivery via contrast microbubbles.
Tissue-specific ultrasound contrast agents are injected intravenously and taken up by specific tissues or they adhere to specific targets such as venous thrombosis. These effects may require minutes to several hours to reach maximum effectiveness. By enhancing the acoustic differences between normal and diseased tissues, these tissue-specific agents improve the detectability of abnormalities.
Some microbubbles accumulate in normal hepatic tissue; some are phagocytosed by Kupffer cells in the reticuloendothelial system and others may stay in the sinusoids. Liver tumors without normal Kupffer cells can be identified by the lack of the typical mosaic color pattern of the induced acoustic emission. The hepatic parenchymal phase, which may last from less than an hour to several days, depending on the specific contrast medium used, may be imaged by bubble-specific modes such as stimulated acoustic emission (color Doppler using high MI) or pulse inversion imaging.
Transducer
A transducer is a device, usually electrical or electronic, that converts one type of energy to another. Most transducers are either sensors or actuators. A transducer (also called probe) is a main part of the ultrasound machine. The transducer sends ultrasound waves into the body and receives the echoes produced by the waves when it is placed on or over the body part being imaged.
Ultrasound transducers are made from crystals with piezoelectric properties. This material vibrates at a resonant frequency, when an alternating electric current is applied. The vibration is transmitted into the tissue in short bursts. The speed of transmission within most soft tissues is 1540 m/s, producing a transit time of 6.5 ms/cm. Because the velocity of ultrasound waves is constant, the time taken for the wave to return to the transducer can be used to determine the depth of the object causing the reflection.
The waves will be reflected when they encounter a boundary between two tissues of different density (e.g. soft tissue and bone) and return to the transducer. Conversely, the crystals emit electrical currents when sound or pressure waves hit them (piezoelectric effect). The same crystals can be used to send and receive sound waves; the probe then acts as a receiver, converting mechanical energy back into an electric signal which is used to display an image. A sound absorbing substance eliminates back reflections from the probe itself, and an acoustic lens focuses the emitted sound waves. Then, the received signal gets processed by software to an image which is displayed at a monitor.
Transducer heads may contain one or more crystal elements. In multi-element probes, each crystal has its own circuit. The advantage is that the ultrasound beam can be controlled by changing the timing in which each element gets pulsed. Especially for cardiac ultrasound it is important to steer the beam.
Usually, several different transducer types are available to select the appropriate one for optimal imaging. Probes are formed in many shapes and sizes. The shape of the probe determines its field of view.
Transducers are described in megahertz (MHz) indicating their sound wave frequency. The frequency of emitted sound waves determines how deep the sound beam penetrates and the resolution of the image. Most transducers are only able to emit one frequency because the piezoelectric ceramic or crystals within it have a certain inherent frequency, but multi-frequency probes are also available.
See also Blanking Distance, Damping, Maximum Response Axis, Omnidirectional, and Huygens Principle.
Ultralink LLC
www.arcscan.com 'Ultralink LLC is a medical imaging company based in St. Petersburg, Florida. We are committed to designing and providing advanced diagnostic ultrasound eye imaging systems to the worldwide health care community.
Ultralink developed the world's first very high frequency (VHF) digital ultrasound eye scanner - the Artemis. Our advanced patented technology provides images of the cornea and anterior segments of the human eye with unparalleled resolution. Further applications of this technology are being explored, to complement its value in the fields of refractive surgery and refractive implants.'

Ultrasound Systems:
Contact Information
Ultrasound Imaging
(US) Also called echography, sonography, ultrasonography, echotomography, ultrasonic tomography.
Diagnostic imaging plays a vital role in modern healthcare, allowing medical professionals to visualize internal structures of the body and assist in the diagnosis and treatment of various conditions. Two terms that are commonly used interchangeably but possess distinct meanings in the field of medical imaging are 'ultrasound' and 'sonography.'
Ultrasound is the imaging technique that utilizes sound waves to create real-time images, while sonography encompasses the entire process of performing ultrasound examinations and interpreting the obtained images. Ultrasonography is a synonymous term for sonography, emphasizing the use of ultrasound technology in diagnostic imaging. A sonogram, on the other hand, refers to the resulting image produced during an ultrasound examination.
Ultrasonic waves, generated by a quartz crystal, cause mechanical perturbation of an elastic medium, resulting in rarefaction and compression of the medium particles. These waves are reflected at the interfaces between different tissues due to differences in their mechanical properties. The transmission and reflection of these high-frequency waves are displayed with different types of ultrasound modes.
By utilizing the speed of wave propagation in tissues, the time of reflection information can be converted into distance of reflection information. The use of higher frequencies in medical ultrasound imaging yields better image resolution. However, higher frequencies also lead to increased absorption of the sound beam by the medium, limiting its penetration depth. For instance, higher frequencies (e.g., 7.5 MHz) are employed to provide detailed imaging of superficial organs like the thyroid gland and breast, while lower frequencies (e.g., 3.5 MHz) are used for abdominal examinations.

Ultrasound in medical imaging offers several advantages including:
noninvasiveness;
safety with no potential risks;
widespread availability and relatively low cost.

Diagnostic ultrasound imaging is generally considered safe, with no adverse effects. As medical ultrasound is extensively used in pregnancy and pediatric imaging, it is crucial for practitioners to ensure its safe usage. Ultrasound can cause mechanical and thermal effects in tissue, which are amplified with increased output power. Consequently, guidelines for the safe use of ultrasound have been issued to address the growing use of color flow imaging, pulsed spectral Doppler, and higher demands on B-mode imaging. Furthermore, recent ultrasound safety regulations have shifted more responsibility to the operator to ensure the safe use of ultrasound.

See also Skinline, Pregnancy Ultrasound, Obstetric and Gynecologic Ultrasound, Musculoskeletal and Joint Ultrasound, Ultrasound Elastography and Prostate Ultrasound.
Result Pages :
 
Share This Page
Facebook
Twitter
LinkedIn
Look
      Ups
Medical-Ultrasound-Imaging.com
former US-TIP.com
Member of SoftWays' Medical Imaging Group - MR-TIP • Radiology TIP • Medical-Ultrasound-Imaging
Copyright © 2008 - 2024 SoftWays. All rights reserved.
Terms of Use | Privacy Policy | Advertise With Us
 [last update: 2023-11-06 01:42:00]